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We consider the dispersion of energy levels for both standard and inverted quantum harmonic oscillators in the
presence of a uniform electromagnetic field. For this analysis we use a solution of the corresponding eigenproblem
in terms of the Kummer functions. We find a complete description of the energy levels for a particle of mass m
and electric charge q subject to the action of a harmonic oscillator and simultaneous uniform magnetic and electric
fields. We also analyze the effect of spin on energy levels for an electron.
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1. Introduction

In 1927 Landau [1] solved the eigenproblem for a
charged particle in a homogeneous magnetic field. The
Landau levels and their generalisations are of continuous
interest [2–8]. These are useful in analysis of quantum
Hall effect [9] and level crossings in graphene [10]. On
the other hand, since their introduction quantum har-
monic oscillators, both standard and inverted (repulsive)
(cf. [11–14]), have proved to be one of the most useful
models in particle physics. We analyse the effect of ap-
plying a uniform electromagnetic field to the energy lev-
els of a quantum harmonic oscillator. We investigate an
eigenproblem for a particle on a plane in a constant ho-
mogeneous electromagnetic field along with the potential
of a harmonic oscillator. The magnetic field is directed
perpendicularly to the plane and the electric field is par-
allel to the plane. The direction of both potential forces
is taken to be parallel to the x-axis. The y-part of the
wave function for a suitable Landau gauge is a plane wave
with a wave number ky. We consider both standard and
inverted one-dimensional harmonic oscillators, acting in
the direction of the electric field. In the papers [2] and [3]
a particle in electromagnetic field is considered, in [4], [5],
and [6] an influence of anisotropic harmonic oscillator
is taken into account. Our model corresponds to the
limit case of strongly anisotropic oscillator coupled with
an electromagnetic field. The direct case was considered
in [6], here we deal also with an inverted oscillator. Using
the Landau gauge we study the dependence of the dis-
persion of energy levels on the wave vector contrary to
the fact that the standard Landau levels are independent
of the wave vector.

2. Separation of the Hamiltonian

We consider the Hamiltonian for a particle of mass m
with electric charge q on a plane in a uniform magnetic
field B in harmonic oscillator potential interacting with
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homogeneous electric field energy U . It is given by the
following formula:

Ĥ =
1

2m
(− i~∇− qA)2 + U (1)

for

U =
1

2
Kx2 − qEx,A = B[0, x] (2)

(the Landau gauge).
The substitution
Ψ(x, y) = χ(x)e ikyy (3)

yields the following equation for χ(x):

Ĥxχ(x) = Eχ(x), (4)
where

Ĥx =
p̂2x
2m

+
1

2
mω2

c (x− xc)2 +
1

2
Kx2 − qEx, (5)

ωc = qB
m , xc =

py
qB , py = ~ky. The quantity ωc is called

the cyclotron frequency, py is an eigenvalue of the mo-
mentum operator in the y-direction and xc corresponds
to the center of the cyclotron orbit for the gauge (2). Let
us put

K ′ = mω2
c +K. (6)

For K,K ′ 6= 0 we obtain the following form:

Ĥx =
p̂2x
2m

+
1

2
K ′(x− x0)2

+
~2

2m

K

K ′
(ky − k0)2 −

1

2K
q2E2, (7)

where x0 =
mω2

cxc+qE
K′ , k0 = mωc

~K qE . The eigenproblem
for a direct oscillator (K > 0), was solved in [6]. In
the next section we deal also with the inverted oscillator,
which leads us to some new interesting cases. For the
particular case K = 0,K ′ 6= 0 one obtains [2, 15]:

Ĥx =
p̂2x
2m

+
1

2
K ′(x− x0)2 − ~

E
B
ky −

1

2K ′
q2E2. (8)

The case mω2
c +K = 0 yields the same operator as for a

particle in a homogeneous potential field

Ĥx =
p̂2x
2m
− (mω2

cxc + qE)x+
1

2
mω2

cx
2
c . (9)

The eigenproblem for Eq. (9) leads to the Airy equa-
tion [16].

(94)
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3. Dispersion of energy levels

We recall very shortly some basic facts, needed later,
concerning harmonic oscillators both direct and (less
known) repulsive. This is done mainly for fixing nota-
tion. In one-dimensional case the harmonic oscillator is
described by the following Hamiltonian:

Ĥ = − i~2

2m

d2

dx2
+

1

2
Kx2. (10)

The eigenfunctions can be chosen with defined parity be-
cause the potential is an even function. The solution can
be given by means of the Kummer function (confluent
hypergeometric function of type (1,1)) (cf. [16–18]):

Ψp,K,λ(x) = fα,p(x)1F1(−ν + 1
4
+ p

2
; 1
2
+ p;αx2), (11)

where p = 0, 1 and λ = 2mE
~2 , α2 = mK

~2 , ν = λ
4α ,

fα,p(x) = xp e−αx
2/2.

It is very well known that for K > 0, the spectrum of
λ and energy is non-degenerate and discrete. For K < 0
the spectrum is continuous, equal to R and doubly de-
generated [13].

The eigenfunctions of the operator (5) for K,K ′ 6= 0
have the following form:

χp,K,B,E,λ(x) = Ψp,K′,λ(x− x0), (12)
where α2 = mK′

~2 . The law of energy dispersion as a
function of ky has the following parabolic form:

E(ky) = E(k0) +D(ky), (13)

E(k0) =
~2

2m
λ− 1

2K
q2E2, (14)

D(ky) =
~2

2m

K

K ′
(ky − k0)2. (15)

For K ′ > 0, the values of λ are non-degenerate and in
the discrete set λn = (1 + 2n)λ0, where λ0 =

√
mK′

i ~.
Hence

En(k0) = (
1

2
+ n)~ω′ − 1

2K
q2E2, ω′ =

√
K ′

m
. (16)

For K ′ < 0 the values of λ are doubly degenerated and
fill in the whole real axis.

We see that the shape of energy levels depends on the
sign at (ky − k0)2 in Eq. (13):

K > 0 — levels bent with arms heading upwards,
non-degenerated discrete spectrum of E(k0);

−mω2
c < K < 0 — levels bent with arms heading

downwards, non-degenerated discrete spectrum of
E(k0);

K < −mω2
c — levels bent with arms heading up-

wards, doubly degenerated continuous spectrum of
E(k0).

For K = 0,K ′ 6= 0 we put k0 := 0 and from Eq. (8) we
obtain a linear function of ky describing the dispersion of
energy levels

En(ky) = En(k0) +D(ky), (17)

En(k0) =
~2

2m
λn −

1

2K ′
q2E2, (18)

D(ky) = −~
E
B
ky. (19)

For E = 0 this is the standard case of constant discrete
Landau levels.

When K = −mω2
c cf. Eq. (9) we have a qualitative

change of eigenfunctions, they express in generally by
means of the Airy function. In Figs. 1–3 we displayed
the character of dispersion of Landau levels for various
values of K.

Fig. 1. Dispersion of Landau levels in an electromag-
netic field, K = 0. Non-zero slope is due to the presence
of an electric field. Splitting of energy levels is due to
the presence of a magnetic field.

Fig. 2. Qualitative picture for K > 0 of energy levels
for electron in a harmonic oscillator and in a constant
electromagnetic field. Note that here we have three pos-
sibilities for relative positions of En,+ versus En+1,−.

Fig. 3. Qualitative picture for −mω2
c < K < 0 of en-

ergy levels for electron in a potential of a harmonic os-
cillator and in a constant electromagnetic field.
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4. Dispersion of energy levels for an electron

For a charged particle with spin in an electromagnetic
field, the complete Hamiltonian is a sum of the spatial
and spin parts

Ĥtot = Ĥ + Ĥspin. (20)
An eigenproblem for the spatial part was considered in
previous sections. The spin part has the following form:

Ĥspin = −g ~q
2m

B · ŝ, (21)

where g is a gyroscopic factor (g-factor).
The eigenvalues for the spin part are as follows:

Espin = −g
2
σ i~ωc, σ = −s, . . . , s. (22)

Each of the energy levels splits into 2s+ 1 sublevels
En,σ(ky) = En,σ(k0) +D(ky), (23)

where
En,σ(k0) = En(k0)−

g

2
σ i~ωc. (24)

A gap between adjacent levels is equal to
g

2
~|ωc| for |q| = e. (25)

Now, consider energy levels for an electron in electro-
magnetic field. Since for an electron s = 1

2 , there are
exactly two eigenstates of a spin Hamiltonian. Eigenen-
ergies have the following form:

En,±(ky) = En(ky)±
g

4
i~|ωc|, (26)

Based on his equation, Dirac has shown that the g-
factor for an electron equals g = 2 [19]. Thus, according
to this theory for K = 0 we have the following degener-
ation:

En,+(ky) = En+1,−(ky). (27)
However, taking into account a correction due to quan-
tum electrodynamics for Dirac’s theory the g-factor
should be taken as g ≈ 2.002319 [20, 21]. This means
that for K = 0 we have

En,+(ky) > En+1,−(ky), (28)
although the gap between these levels is very small. More
precisely, the following relations hold:

for K < Kg: En,+(ky) > En+1,−(ky),
for K = Kg: En,+(ky) = En+1,−(ky),
for K > Kg: En,+(ky) < En+1,−(ky),

where Kg =
g2−4

4 mω2
c . Notice that we have obtained two

critical values of the spring constant K : Kc = −mω2
c , at

which there is a change in the spectrum from discrete to
continuous, and Kg, for which the Rabi levels are doubly
degenerated. Observe that Kc < 0, which corresponds
to a suitable inverted oscillator interacting with the elec-
tromagnetic field such that K ′ = 0.

5. Conclusions and discussion

We derived a law for the dispersion of energy versus
a wave number ky of a wave function. It is interest-
ing that despite that the direction of potential forces is
along x-axis the dispersion depends explicitly on the wave
number ky. It was shown that this law is parabolic for

K 6= 0. In the case where K = 0, the dependence has
a linear form i.e. E(ky) = aky + b. For K 6= −mω2

c the
eigenfunctions can be expressed by means of confluent
Kummer functions, whereas for K = −mω2

c by means of
the Airy functions. Moreover, the value K = −mω2

c can
be regarded as the critical one in the sense that above this
value the spectrum is discrete and below it is continuous.
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