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We study the Hong–Mandel 2n th-order squeezing of the Hermitian operator, Xθ ≡ X1 cos θ + X2 sin θ and

amplitude n th-power squeezing of the Hermitian operator, Y (n)
θ ≡ Y

(n)
1 cos θ + Y

(n)
2 sin θ in superposed state

|ψ〉 = K[|α,+〉 + r e iϕ|0〉], of vacuum state and even coherent state defined by |α,+〉 = K+[|α〉 + | − α〉]. Here
operators X1,2 are defined by X1+ iX2 = a, operators Y (n)

1,2 are defined by Y (n)
1 + iY

(n)
2 = an, a is the annihilation

operator, α, θ, r and ϕ are arbitrary and the only restriction on these is the normalization condition of the super-
posed state. We show that the Hong–Mandel 2n th-order squeezing and amplitude odd-power squeezing exhibited
by even coherent state enhance in its superposition with vacuum state. Variations of these higher-orders squeezing
with different parameters near its maxima have also been discussed.
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1. Introduction

In quantum optics, much attention is being paid to
non-classical features [1] of a state, which cannot be ex-
plained on the basis of classical probability concepts. The
non-classical features of a quantum state can be manifes-
ted in different ways like squeezing, anti-bunching, sub-
Poissonian photon statistics and various kinds of squee-
zing etc. Earlier study of such non-classical features was
largely in academic interest [2, 3], but now their appli-
cations in quantum information theory such as commu-
nication [4], quantum teleportation [5], dense coding [6]
and quantum cryptography [7] are well realized. It has
demonstrated that non-classicality is the necessary input
for entangled state [8].

Squeezing, a well-known non-classical effect, is a phe-
nomenon in which variance in one of the quadrature com-
ponents becomes less than that in vacuum state or cohe-
rent state [9] at the cost of increased fluctuations in the
other quadrature component. This definition of squee-
zing has been generalized to case of several variables [10–
13]. Hong and Mandel [10] introduced the concept of
higher-order squeezing by considering the 2n th order mo-
ments of the quadrature component and defined a state
to be 2n th order squeezed if the expectation value of the
2n th power of the difference between a field quadrature
and its average value is less than what it would be in a

∗corresponding author; e-mail: pankaj_k25@rediffmail.com

coherent state. According to the Hong and Mandel defi-
nition [10], a state |ψ〉 is said to be 2n th-order squeezed
for the operator,

Xθ = X1 cos θ +X2 sin θ, (1)
if the 2n th-order moment of Xθ,
〈ψ| (∆Xθ)

2n |ψ〉 < (2n− 1)!!/22n. (2)
Here Hermitian operatorsX1,2 are defined byX1+ iX2 =
a, a is the annihilation operator, θ is an arbitrary angle,
∆Xθ = Xθ − 〈ψ|Xθ |ψ〉 and (2n− 1)!! is product of fac-
tors, starting with (2n − 1) and decreasing in steps of 2
and ending at 1.

Another form of higher-order squeezing in terms of real
and imaginary parts of square of the amplitude, the so-
called “amplitude-squared squeezing”, has been proposed
by Hillery [11] by considering the operators Y1 and Y2,
such that Y1 + iY2 = a2, a is annihilation operator. Hil-
lery introduced another type of higher-order squeezing,
called sum squeezing and difference squeezing [11] by con-
sidering two mode systems and using sum and differen-
ces of various bilinear combinations constructed from the
creation and annihilation operators. Zhang et al. [12]
generalized amplitude-squared squeezing defined by Hil-
lery [11] to amplitude n th-power squeezing. According
to Zhang et al. definition [12], a state |ψ〉 is said to be
amplitude n th-power squeezed for the operator,

Y
(n)
θ ≡ Y (n)

1 cos θ + Y
(n)
2 sin θ, (3)

if the n th-order moment of Y (n)
θ ,

〈ψ| (∆Y (n)
θ )2 |ψ〉 < 1

4

∣∣∣〈ψ| [Y (n)
θ , Y

(n)
θ+π/2] |ψ〉

∣∣∣ . (4)
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Here Y (n)
1 + iY

(n)
2 = an, ∆Y

(n)
θ = Y

(n)
θ − 〈ψ|Y (n)

θ |ψ〉,

[Y
(n)
θ , Y

(n)
θ+π/2] =

n∑
r=1

(nCr)
2r!a†

(n−r)
a(n−r) and θ is an ar-

bitrary angle.
The Hong and Mandel higher-order squeezing [10]

is quite distinct from ordinary and higher-order squee-
zing defined by authors [11, 12] because such squee-
zing does not require that the uncertainty product
be a minimum and therefore both quadratures of
the field can have higher-order squeezing simultane-
ously [14]. In other words, states exist for which pro-
duct of higher-order fluctuations of both quadrature
〈ψ| (∆Xθ)

n |ψ〉 〈ψ| (∆Xθ+π/2)n |ψ〉, takes a value less
than that for a coherent state. Lynch et al. [15] studied
the minimization of product of higher-order fluctuations
of both quadratures numerically. Recently we have stu-
died [16] simultaneous occurrence of the Hong–Mandel
higher-order squeezing of both quadrature components
in orthogonal even coherent state.

Many different schemes of generating such non-
classical states have been proposed [17–21] such as four-
wave mixing, resonance fluorescence, the use of free elec-
tron laser, cavities, harmonic generation, parametric am-
plification, and JC model. Other possibilities for gene-
rating such effect have been proposed by superposition
of two or more coherent states. It has been realized
that a coherent state does not exhibit non-classical ef-
fects but the superposition of two or more coherent state
exhibit [22–29] various non-classical effects like squee-
zing, antibunching, higher-order squeezing and higher-
order sub-Poissonian statistics etc. Buzek et al. [22] and
Xia and Guo [25] studied such effects in the superposition
of two coherent states |α〉 and |−α〉 and reported that the
even coherent state ∼ (|α〉+ |−α〉) exhibits squeezing but
not sub-Poissonian statistics while the odd coherent state
∼ (|α〉 − |−α〉) exhibits sub-Poissonian statistics but not
squeezing. Xia and Guo also studied [25] such effects in
the displaced even and odd coherent state. Schleich et
al. [23] studied such effects in the superposition of two co-
herent states, |α〉 and |α∗〉, and reported that such super-
position can exhibit both squeezing and sub-Poissonian
statistics when |α|2 � 1. Recently we reported [27–29]
several non-classical features in superposition of two ar-
bitrary coherent states. In practice, the superposition
of coherent states can be generated in interaction of co-
herent state with nonlinear media [30] and in quantum
non-demolition techniques [31].

In this paper we study the Hong–Mandel 2n th-order
squeezing of the operator Xθ and amplitude n th-power
squeezing of the operator Y (n)

θ in the superposed state,
|ψ〉 = K[|α,+〉+ re− iϕ |0〉];

K = [1 + r2 + 4rK+ cosϕe−|α|
2/2]−1/2 (5)

of vacuum state and even coherent state defined by
|α,+〉 = K+[|α〉+ |−α〉]; K+ = [2(1+ e−2|α|

2

)]−1/2. Here
parameters α, θ, r and ϕ are arbitrary and the only re-
striction on these is the normalization condition of the

superposed state. We show that the Hong–Mandel 2n th-
order squeezing and amplitude odd-power squeezing exhi-
bited by even coherent state enhance in its superposi-
tion with vacuum state. Variations of these higher-orders
squeezing with different parameters near its maxima have
also been discussed.

2. The Hong–Mandel higher-order squeezing
of Xθ in the superposed state |ψ〉

A single mode coherent state |α〉 defined by a |α〉 =
α |α〉 can be written as

|α〉 = exp(−1/2 |α|2)

∞∑
n=0

αn√
n!
|n〉 = D(α) |0〉 . (6)

Here α = Ae− iθα , |n〉 is the occupation number and
D(α) = exp(αa+ − α∗a) is the displacement operator.
Since e− iθNae− iθN = ae− iθ and |α〉 = e− iθαN |A〉,
where N = a+a, we have
〈ψ| (∆Xθ,|ψ〉)

2n |ψ〉 = 〈ψ1| (∆Xδ,|ψ1〉. (7)
Here |ψ〉 = e− iθαN |ψ1〉, |ψ1〉 = K[|A,+〉 + re− iφ|0〉],
|A,+〉 = K+[|A〉 + | − A〉], ∆Xθ,|ψ〉 = Xθ − 〈ψ|Xθ |ψ〉,
∆Xδ,|ψ〉ψ1〉 = Xδ − 〈ψ1|Xδ|ψ1〉 and δ = θα − θ. Now we
have

a |A,+〉 = KA+ |A,−〉 ; a2 |A,+〉 = A2 |A,+〉 ;

〈A,+| a+a |A,+〉 = tanhA2. (8)
Here |A,−〉 = K−[|A〉−|−A〉], K− = [2(1− e−2A

2

)]−1/2,
A+ = A(1− e−2A

2

)−1/2 and K = [1− e−4A
2

]−1/2.
For even m, straightforward calculations lead to
〈A,+| am |A,+〉 = Am;

〈A,+| a†mam |A,+〉 = A2m, (9)
and
〈0| am |A,+〉 = 2K+A

m e−A
2/2;

〈A,+| am |0〉 = 0. (10)
Similarly for odd m, we have
〈A,+| am |A,+〉 = 0;

〈A,+| a†mam |A,+〉 = A2m tanhA2, (11)
and
〈0| am |A,+〉 = 0; 〈A,+| am |0〉 = 0. (12)

We have also
〈0| a†mam |A,+〉 = 0; 〈A,+| a†mam |0〉 = 0. (13)

Hence we finally get, for even m

〈ψ1| am |ψ1〉 = K2Am
[
2rK+ e−A

2/2 e iφ + r2
]
, (14)

〈ψ1| a†
m
am |ψ1〉 = K2r2A2m, (15)

and for odd m,
〈ψ1| am |ψ1〉 = 0, (16)

〈ψ1| a†
m
am |ψ1〉 = K2r2A2m tanhA2. (17)

Now, the 2n th-order moment of Xδ can be written as

〈ψ1| (∆Xδ) |ψ1〉 =

n−1∑
i=0

2n!

23i(2n− 2i)!i!
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×〈ψ1| : (∆Xδ)
2n−2i : |ψ1〉+

(2n− 1)!!

22n
. (18)

Since 〈ψ1| : (∆Xδ)
2n−2i : |ψ1〉 = 0, therefore we have

〈ψ1| (∆Xδ) |ψ1〉 =

n−1∑
i=0

2n!

23i(2n− 2i)!i!

×〈ψ1| : (∆Xδ)
2n−2i : |ψ1〉+

(2n− 1)!!

22n
. (19)

Now, tedious but straightforward calculations finally lead
to
〈ψ1| : X2n−2i

δ, : |ψ1〉 = K2|α|2n−2i

×

(
cos2n−2i δ + (−1)n−1 sin2n−2i δ e−2|α|

2

2 cosh |α|2 e−2|α|2

+
r cos((n− i)δ − φ)

22n−2i−1

)
, (20)

For simplicity we define squeezing factor,

S2n =
〈ψ1| (∆Xδ)

2n |ψ1〉 − 2−2n(2n− 1)!!

−2−2n(2n− 1)!!
. (21)

This should be noted that the Hong–Mandel 2n th-order
squeezing occurs if −1 ≤ S2n < 0. For S2n < 0, we can
define degree of squeezing by D2n = −S2n. Also we can
call 100D2n as percentage of squeezing. Using computer
programming we get maximum the Hong–Mandel higher-
order squeezing of Xδ in the superposed state |ψ1〉 by
minimizing S2n with respect to the parameters |α|, δ, r,
and ϕ. The minimum value (S2n)min of squeezing factor
S2n, and the values of |α|, δ, r, and ϕ at which (S2n)min

occurs are reported in the following Table I.

TABLE I

Numerical values of (S2n)min for even coherent state (left)
and superposed states of even coherent state and vacuum
state (right).

Order 2n
δ = ±π

2
δ = ±π

2
, ϕ = 0

|α| (S2n)min |α| r (S2n)min

second 2 0.80 –0.5569 1.60 1.07 –0.7404
fourth 4 0.65 –0.7296 1.30 1.10 –0.8895
sixth 6 0.56 –0.8084, 1.12 1.06 –0.9408
eighth 8 0.51 –0.8524 1.02 1.09 –0.9632

We note that the Hong–Mandel higher-order squeezing
increases with increase of the order 2n of squeezing for
even coherent state and also for superposition of even co-
herent state with vacuum state but higher-order squee-
zing exhibited by even coherent state enhances in its
superposition with vacuum state. It can also be noted
that (S2n)min decreases with increase of the order 2n of
squeezing and therefore we conclude any large amount of
higher-order squeezing can be obtained by choosing suit-
ably a large 2n. We also note that we get more than 96%
higher-order squeezing for orders greater than sixth in
superposition of even coherent state with vacuum state.
Variations of squeezing factor S2n for ordinary, fourth-
order, sixth-order, eighth-order, i.e., 2n = 2, 4, 6 and 8

with the parameter |α| at δ = π
2 , ϕ = 0 near the minima

are shown in Figs. 1–4, respectively.

Fig. 1. Variation of S2 with |α| for even coherent state
(r = 0) and for superposed state of even coherent state
and vacuum state at δ = π

2
, ϕ = 0.

Fig. 2. As in Fig. 1, but for S4.

Fig. 3. As in Fig. 1, but for S6.
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Fig. 4. As in Fig. 1, but for S6.

3. Amplitude n th-power squeezing of Y (n)
θ

in the superposed state |ψ〉
Since e− iθNae− iθN = ae− iθ and |α〉 = e− iθαN |A〉,

where N = a+a, we have

〈ψ| (∆Y (n)
θ )2n |ψ〉 = 〈ψ1| (∆Y (n)

δ )2n |ψ1〉 . (22)
Here |ψ〉 = e− iθαN |ψ1〉, |ψ1〉 = K[|A,+〉 + re− iφ|0〉],
|A,+〉 = K+[|A〉 + | − A〉], and δ = θα − θ. For simpli-
city we define squeezing factor for amplitude n th power
squeezing,

(Sa)n = (23)

〈ψ1| (∆Y (n)
δ )n |ψ1〉 − 1

4

∣∣∣〈ψ1| [Y (n)
δ , Y

(n)
δ+π/2] |ψ1〉

∣∣∣
1
4

∣∣∣〈ψ1| [Y (n)
δ , Y

(n)
δ+π/2] |ψ1〉

∣∣∣ .

This should be noted that amplitude n th-power squee-
zing occurs if −1 ≤ (Sa)n < 0. For (Sa)n < 0, we
can define degree of amplitude n th-power squeezing by
(Da)n = −(Sa)n. Also we can call 100(Da)n as percen-
tage of amplitude n th-power squeezing. Now we have for
even n,

〈ψ1| an |ψ1〉 = K2|α|n
[
2rK+ e−|α|

2/2 e− iφ2 + r2
]
,(24)

〈ψ1| a†
n
an |ψ1〉 = K2r2|α|2n, (25)

and for odd n,
〈ψ1| an |ψ1〉 = 0, (26)

〈ψ1| a†
n
an |ψ1〉 = K2r2|α|2n tanh |α|2. (27)

Using Eqs. (23)–(27) and computer programming we get
maximum amplitude n th-power squeezing of Yδ in the
superposed state |ψ1〉 by minimizing (Sa)n with respect
to the parameters |α|, δ, r and ϕ. The minimum value
(Sa)n,min of amplitude n th-power squeezing factor (Sa)n,
and the values of |α|, δ, r and ϕ at which (Sa)n,min occurs
are reported in the following Table II.

We conclude that amplitude n th-power squeezing in
even coherent state and superposition state of even co-
herent state with vacuum state occurs only for odd n.

We also note that amplitude odd-power squeezing incre-
ases with increasing the order n of squeezing for even
coherent state and also for superposition of even cohe-
rent state with vacuum state. This should also be noted
that amplitude odd-power squeezing exhibited by even
coherent state enhances in its superposition with vacuum
state. Variations of squeezing factor (Sa)n for first, se-
cond, third, and fourth-power, i.e., n = 1, 2, 3 and 4
with the parameter |α| at δ = π/2, ϕ = 0 with r = 0 and
r = 1 are shown in Figs. 5–8, respectively.

Fig. 5. Variation of (Sa)1 with |α| for even coherent
state (r = 0) and for superposed state of even coherent
state and vacuum state at δ = π

2
, ϕ = 0.

Fig. 6. As in Fig. 5, but for (Sa)2.

TABLE I

Numerical values of (Sa)n,min for even coherent state
(left) and superposed states of even coherent state and
vacuum state (right).

Order 2n
δ = ±π

2
δ = ±π

2
, ϕ = 0, r = 1

|α| (Sa)n,min |α| (Sa)n,min

first 1 0.80 –0.5569 1.60 –0.7404
second 2 no squeezing
third 3 0.56 –0.8084 1.12 –0.9408
fourth 4 no squeezing
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Fig. 7. As in Fig. 5, but for (Sa)3.

Fig. 8. As in Fig. 5, but for (Sa)4.

4. Conclusions

In the present paper we investigated the Hong–Mandel
2n th-order squeezing of the operator Xθ ≡ X1 cos θ +
X2 sin θ and amplitude n th-power squeezing of the ope-
rator Y (n)

θ ≡ Y
(n)
1 cos θ + Y

(n)
2 sin θ in superposed state,

|ψ〉 = K[|α,+〉 + re− iϕ |0〉], of vacuum state and even
coherent state defined by |α,+〉 = K+ [|α〉+ |−α〉]. Here
operators X1,2 are defined by X1 + iX2 = a, operators
Y

(n)
1,2 are defined by Y

(n)
1 + Y

(n)
2 = an, a is the anni-

hilation operator, α, θ, r and ϕ are arbitrary and the
only restriction on these is the normalization condition
of the superposed state |ψ〉. We conclude that the Hong–
Mandel 2n th-order squeezing and amplitude odd-power
squeezing exhibited by even coherent state enhance in
its superposition with vacuum state. It has also been
concluded that any large amount of the Hong–Mandel
2n th-order squeezing and amplitude n th-power squee-
zing can be obtained by choosing suitably a large n. We
also note that we get more than 96% the Hong–Mandel

2n th-order squeezing and more than 94% amplitude n th-
order squeezing for n greater than 3. Variations of these
higher-orders squeezing with different parameters near
its maxima have also been discussed.
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