Superconducting Parameters of Spinel CuRh$_2$S$_4$ under Pressure

M. ITO*, A. TAIRA and K. SONODA

Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan

(Received February 16, 2016; revised version February 7, 2017; in final form April 14, 2017)

We investigated the magnetic properties of chalcogenide-spinel superconductor CuRh$_2$S$_4$ under pressure and estimated the pressure dependence of the superconducting parameters. With increasing pressure, the superconducting transition temperature (T_c), thermodynamic critical field (H_c), upper critical field (H_{c2}), penetration depth (λ), and GL parameter (κ) increase. Meanwhile, the lower critical field (H_{c1}) is unchanged and the Ginzburg–Landau coherence length (ξ_{GL}) is reduced by pressurization. The increasing value of κ indicates enhanced characteristics of the type-II superconductor CuRh$_2$S$_4$.

DOI: 10.12693/APhysPolA.131.1450

PACS/topics: 74.70.Dd, 74.62.Fj, 74.25.Bt

1. Introduction

Chalcogenide spinels, which have the chemical formula AB$_2$X$_4$ (A, B: transition metals, X: chalcogen), have a variety of attractive physical properties. The spinels have a cubic crystal structure with the space group $Fd\bar{3}m$. The characteristics of this structure are that A- and B-site ions are coordinated by four X-site ions to form a tetrahedron and by six X-site ions to form an octahedron, as shown in Fig. 1. Cu-based thiospinel tends to have a mixed-valence state at the B site; i.e., B$^{3+}$ and B$^{4+}$ coexist. CuRh$_2$S$_4$ is a Bardeen–Cooper–Schrieffer (BCS) superconductor with a superconducting transition temperature $T_c = 4.7$ K [1]. Hagino et al. investigated the electrical and thermodynamic properties of CuRh$_2$S$_4$, and estimated various superconducting parameters at ambient pressure [2]. Tachibana recently obtained a value for the zero-temperature upper critical field, $H_{c2}(0) = 33$ kOe, using low-temperature specific-heat measurements in a magnetic field [3]. The pressure dependence of T_c up to $P = 2.2$ GPa for the spinels LiTi$_2$O$_4$, CuRh$_2$Se$_4$, and CuRh$_2$S$_4$ was investigated by Shelton et al. [4]. They reported that T_c increases proportionally to P, because of the enhancement of the Debye temperature, θ.

Previously, one of the authors (M.I.) measured electric resistivity under pressure and reported the phenomenon of the pressure-induced transition of CuRh$_2$S$_4$ from a superconductor to an insulator [5]. With increasing pressure, T_c initially increases to a maximum value of 6.4 K at 4.0 GPa and then slightly decreases. With further compression, superconductivity in CuRh$_2$S$_4$ disappears abruptly at a critical pressure between 5.0 and 5.6 GPa, when it becomes an insulator. The origin of the pressure-induced transition from superconductor to insulator remains unclear. The present paper further investigates the effects of pressure on the superconducting properties of CuRh$_2$S$_4$, analyzes the magnetization of CuRh$_2$S$_4$ under pressure, and estimates the pressure dependence of superconductivity parameters.

2. Experimental details

Polycrystalline CuRh$_2$S$_4$ was prepared in a solid-state reaction. The temperature dependence of magnetization was measured using a Quantum Design MPMS SQUID magnetometer, in the temperature range from 2 to 10 K. The magnetization measurements were carried out after zero-field cooling to 2 K. Pressure up to 0.74 GPa was generated using a piston cylinder Be–Cu clamp cell that can be attached to the sample rod of the MPMS magnetometer [6]. The pressure in the low-temperature range was determined from the pressure dependence of the superconducting transition temperature of a small piece of Sn mounted in the pressure cell.

*corresponding author; e-mail: shoya@sci.kagoshima-u.ac.jp
3. Results and discussion

3.1. Superconducting transition temperature, T_c

Figure 2a–c shows the temperature, T, dependence of magnetization divided by the applied field, M/H, of CuRh$_2$S$_4$ for various magnetic fields and pressures. At all pressures, M/H dropped greatly at T_c in the weakest magnetic field ($H = 50$ Oe). At $P = 0.00$ GPa, $T_c = 0$ was 4.5 K.

![Fig. 2](image)

Figure 2. Temperature dependence of magnetization divided by the applied field, M/H, of CuRh$_2$S$_4$ for (a) $P = 0.00$ GPa, (b) $P = 0.39$ GPa, and (c) $P = 0.74$ GPa.

As shown in Fig. 3, M/H at $T = 2$ K and $H = 50$ Oe for CuRh$_2$S$_4$. The solid line is a visual aid.

![Fig. 3](image)

Fig. 3. Pressure dependence of M/H at $T = 2$ K and $H = 50$ Oe for CuRh$_2$S$_4$. The solid line is a visual aid.

As shown in Fig. 3, M/H at $T = 2$ K and $H = 50$ Oe does not depend on P at $0 \leq P \leq 0.74$ GPa. This means that the shielding volume fraction of CuRh$_2$S$_4$ is insensitive to P.

![Fig. 4](image)

Fig. 4. Pressure dependence of the transition temperature normalized by the ambient pressure, $T_c/T_c|_{P=0}$, of CuRh$_2$S$_4$. The solid line shows the linear fitting result.

Figure 4 shows the P dependence of T_c normalized by the value at $P = 0.00$ GPa, $T_c/T_c|_{P=0}$. With pressurization, $T_c/T_c|_{P=0}$ increases in proportion to P with an initial rate of $d(T_c/T_c|_{P=0})/dP = 1.28 \times 10^{-1}$ GPa$^{-1}$. When we employ $T_c|_{P=0} = 4.5$ K, dT_c/dP is 0.57 K/GPa, which is close to the value (≈ 0.5 K/GPa) reported by Shelton et al. [4]. This increase in T_c is due to increase of θ as mentioned in Introduction. According to BCS theory, T_c can be described using θ, electron–lattice interaction U, and the density of states at the Fermi level D_F.

![Fig. 5](image)

Fig. 5. Magnetic field dependence of magnetization (i.e., M–H curve) for CuRh$_2$S$_4$ at $T = 2$ K and various pressures. The arrows show the representative points of H_{c2} for $P = 0$ and 0.74 GPa. The inset is the expanded plot of the low-field range. The arrow shows the point of deviation of M from linear dependence.

Figure 5 shows the magnetization of CuRh$_2$S$_4$, $-4\pi M$, as a function of the magnetic field at 2 K for various pressures. In the range of a weak magnetic field, $-4\pi M$ increases linearly. After reaching at H of around 1200 Oe, $-4\pi M$ decreases with H and reaches zero at around 2000–2500 Oe. For $-4\pi M$ at various P, it is difficult to determine the zero-temperature upper critical field, $H_{c2}(0)$, directly from experimental results. We estimate the P dependence of $H_{c2}(0)$ from the results for the lowest temperature ($T = 2$ K), $H_{c2}(2$ K), $H_{c2}(2$ K) can be obtained as the magnetic field at which $-4\pi M = 0$, as shown by the arrows in the main part of Fig. 5.

3.2. Upper critical field, H_{c2}

Figure 5 shows the M dependence of CuRh$_2$S$_4$, $-4\pi M$, as a function of the magnetic field at 2 K for various pressures. In the range of a weak magnetic field, $-4\pi M$ increases linearly. After reaching at H of around 1200 Oe, $-4\pi M$ decreases with H and reaches zero at around 2000–2500 Oe. For $-4\pi M$ at various P, it is difficult to determine the zero-temperature upper critical field, $H_{c2}(0)$, directly from experimental results. We estimate the P dependence of $H_{c2}(0)$ from the results for the lowest temperature ($T = 2$ K), $H_{c2}(2$ K). $H_{c2}(2$ K) can be obtained as the magnetic field at which $-4\pi M = 0$, as shown by the arrows in the main part of Fig. 5.
estimated [7] using the Werthamer–Helfand–Hohenberg (WHH) formula [8], $H_{c2}(0) = 0.693T_c \left| \frac{dH}{dT} \right|_{T_c}$; the obtained $H_{c2}(0)/H_{c2}(p=0)$ is also plotted in the figure. The P responses of $H_{c2}(2 \text{ K})/H_{c2}(2 \text{ K})_{P=0}$ and $H_{c2}(0)/H_{c2}(0)_{P=0}$ are similar and we consider $H_{c2}(2 \text{ K})/H_{c2}(2 \text{ K})_{P=0} = H_{c2}(0)/H_{c2}(0)_{P=0}$. We obtained the initial increasing rate of $\frac{d(H_{c2}(0)/H_{c2}(0)_{P=0})}{dP} = 2.73 \times 10^{-1} \text{ GPa}^{-1}$ from the solid line in Fig. 6. When we use $H_{c2}(0) = 33 \text{ kOe}$, obtained from the specific-heat measurement under a magnetic field [3], $H_{c2}(0)$ reaches $\approx 40 \text{ kOe}$ at $P = 0.74 \text{ GPa}$.

3.3. Ginzburg–Landau coherence length, ξ_{GL}

The Ginzburg–Landau (GL) coherence length, ξ_{GL}, can be obtained from the relation

$$\xi_{GL} = \left(\frac{\Phi_0}{2\pi H_{c2}(0)} \right)^{1/2},$$

where $\Phi_0 = 2.07 \times 10^{-7} \text{ G cm}^2$ is the magnetic flux quantum. The pressure dependence of ξ_{GL} is estimated using Eq. (1) and the P dependence of $H_{c2}(0)$. Figure 7 shows ξ_{GL} normalized by the value of ambient pressure, $\xi_{GL}/\xi_{GL,P=0}$, as a function of P. With increasing P, $\xi_{GL}/\xi_{GL,P=0}$ decreases with an initial rate of $-1.10 \times 10^{-1} \text{ GPa}^{-1}$. When $H_{c2}(0) = 33 \text{ kOe}$ [3] is adopted, $\xi_{GL,P=0} = 93 \text{ Å}$ estimated, and ξ_{GL} reduces to 85 Å at $P = 0.74 \text{ GPa}$ with pressurization.

3.4. Penetration depth, λ, GL parameter, κ, lower critical field, H_{c1}, and thermodynamic critical field, H_c

Penetration depth, λ, is related to the zero-temperature thermodynamic critical field, $H_c(0)$, by

$$H_c(0) = \frac{\Phi_0}{2\sqrt{2\pi\lambda_{GL}}},$$

where the GL parameter κ is

$$\kappa = \frac{\lambda}{\xi_{GL}}.$$

We get $H_{c1}(0) = 47 \text{ Oe}$ using $\lambda_{P=0} = 3558 \text{ Å}$ and $\xi_{GL,P=0} = 93 \text{ Å}$ from Eqs. (3) and (4). It is difficult to measure $H_{c1}(0)$ accurately from $M-H$ curves obtained in experiments. We estimated the lower critical field at $T = 2 \text{ K}$, $H_{c1}(2 \text{ K}) = 55 \text{ Oe}$, as the point at which λ deviates from having a linear dependence on H as shown by an arrow in the inset of Fig. 5. This value of $H_{c1}(2 \text{ K})$ is close to $H_{c1}(0) (\approx 47 \text{ Oe})$ obtained above. Because $H_{c1}(2 \text{ K})$ is insensitive to P up to 0.74 GPa, we consider that $H_{c1}(0)$ is also constant for varying P. From numerical calculations using Eq. (3), (4) and the P dependence of ξ_{GL} (Fig. 7), the P dependence of λ can be obtained.

Figure 8 shows the P dependence of the penetration depth normalized by ambient pressure, $\lambda/\lambda_{P=0}$, of CuRh$_2$S$_4$.

Figure 8 shows the P dependence of $\lambda/\lambda_{P=0}$. With increase of P, $\lambda/\lambda_{P=0}$ increases with an initial rate of $2.04 \times 10^{-2} \text{ GPa}^{-1}$. κ at $P = 0 \text{ GPa}$, $\kappa_{P=0}$, has a value of 38 according to Eq. (4). The P dependence of κ is obtained from the results presented in Figs. 7 and 8. Figure 9 shows that $\kappa/\kappa_{P=0}$ increases monotonically against P with an initial rate of $1.33 \times 10^{-1} \text{ GPa}^{-1}$. It is well known that superconductors are classified as type-I superconductors for $\kappa < 1/\sqrt{2}$ and type-II superconductors for $\kappa > 1/\sqrt{2}$. CuRh$_2$S$_4$ is a typical type-II superconductor with $\kappa_{P=0} = 21 \Rightarrow 38$ [2]. The increasing value of $\kappa/\kappa_{P=0}$ means that the characteristics of the type-II superconductor of this system are further enhanced by pressurization. We finally estimated the P dependence of $H_e(0)$ using Eq. (2), as shown in Fig. 10. $H_e(0)/H_e(0)_{P=0}$ increases with pressurization at an initial rate of $9.62 \times 10^{-2} \text{ GPa}^{-1}$.

![Fig. 6. Pressure dependence of the zero-T upper critical field normalized by ambient pressure, $H_{c2}(0)/H_{c2}(0)_{P=0}$, estimated using the WHH formula (open circles) and from the $M-H$ curves at 2 K (closed circles). The solid and dotted lines show linear fitting results.](image)

![Fig. 7. Pressure dependence of the GL coherence length normalized by ambient pressure, $\xi_{GL}/\xi_{GL,P=0}$, of CuRh$_2$S$_4$. The solid line shows the linear fitting result.](image)

![Fig. 8. Pressure dependence of the penetration depth normalized by ambient pressure, $\lambda/\lambda_{P=0}$, of CuRh$_2$S$_4$.](image)
4. Conclusion

We investigated the magnetization of spinel superconductor CuRh$_2$S$_4$ under pressure and obtained the pressure dependence of superconducting parameters. T_c increases at the rate $d(T_c/T_{c\ P=0})/dP = 0.128$ GPa$^{-1}$. We also obtained the initial rates of change with pressure $d(H_c(0)/H_{c\ P=0})/dP = 0.0962$, $d(H_{c1}(0)/H_{c1\ P=0})/dP = 0.273$, $d(H_{c2}(0)/H_{c2\ P=0})/dP = 0.0204$, $d(\kappa/\kappa_{P=0})/dP = 0.133$, and $d(\xi_{GL}/\xi_{GL\ P=0})/dP = -0.11$. Meanwhile, $H_{c1}(0)$ does not change with pressurization. The pressure dependence of superconducting parameters of CuRh$_2$S$_4$ is summarized in Table I. Because $(\kappa/\kappa_{P=0})$ increases with pressurization, the superconducting state of CuRh$_2$S$_4$ enhances the features of a type-II superconductor with pressurization. More detailed pressure studies in a higher pressure range are needed to clarify the origin of the pressure-induced transition of this system from superconductor to insulator.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial change rate with pressure [GPa$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_c/T_{c\ P=0}$</td>
<td>0.128</td>
</tr>
<tr>
<td>$(M/H)/(M/H)_{P=0}$</td>
<td>no change</td>
</tr>
<tr>
<td>$H_c(0)/H_{c\ P=0}$</td>
<td>0.0962</td>
</tr>
<tr>
<td>$H_{c1}(0)/H_{c1\ P=0}$</td>
<td>no change</td>
</tr>
<tr>
<td>$H_{c2}(0)/H_{c2\ P=0}$</td>
<td>0.273</td>
</tr>
<tr>
<td>$\xi_{GL}/\xi_{GL\ P=0}$</td>
<td>-0.11</td>
</tr>
<tr>
<td>$\lambda/\lambda_{P=0}$</td>
<td>0.0204</td>
</tr>
<tr>
<td>$\kappa/\kappa_{P=0}$</td>
<td>0.133</td>
</tr>
</tbody>
</table>

Acknowledgments

The figure of the crystal structure was drawn with VESTA [9].

References