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The article presents the scalar calibration method that uses a neural network for the determination of param-
eters of the inverse model of the vector magnetometer. Utilization of the one layered, feed-forward neural network
with the back propagation algorithm has suppressed the systematic errors of the vector magnetometers, namely
the multiplicative, additive, orthogonality and linearity errors. Methodology shown in the article was designed
and used for a pre-flight calibration of the magnetometer used in the first Slovak satellite skCUBE, where the
magnetometer performs stabilization and navigation tasks. The experiment was performed in a 3D Helmholtz coil
system, where the Earth magnetic field was suppressed and at the same time the stimulation field was created.
Suppression of the Earth magnetic field was achieved by special positioning of the satellite. Honeywell HMC 5883L
was used for the verification of the methodology.
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1. Introduction

In general, the main goal of the calibration methodolo-
gies is to improve sensor precision [1–3]. The calibration
is particularly important if high precision of the minia-
ture low-cost sensors is required. The article describes a
scalar position-independent calibration methodology of
3D vector sensors, which decreases demands on the cali-
bration hardware and thanks to the neural networks uti-
lization it is possible to process datasets of any robust-
ness. The calibration procedure was applied to the HMC
5883L magnetometer, which is a part of the first Slovak
satellite of the CubeSat category shown in Fig. 1.

It is a satellite with the dimensions of 10×10×10 cm3

and with the weight up to the 1.33 kg, which is desig-

Fig. 1. The CAD model of the skCUBE.
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nated as the “1U” standard. The magnetometer fulfills
navigational and stabilization tasks that are important
for stopping of the rotation, which can be present after
the satellite launch from the carrying missile container,
applying the B-DOT algorithm [4].

2. Theory

The dominant systematic errors of the vector sensors
are multiplicative, additive, linearity and orthogonality
errors. The fundamental inverse model, in which the
mentioned errors are included, can be defined for each
channel as:

x̃ = Cxx
3 +Bxx+Ax,

ỹ = Cyy
3 +Byy +Ay +Oyxx,

z̃ = Czz
3 +Bzz +Az +Ozyy +Ozxx, (2.1)

where x, y and z are sensor outputs representing the un-
calibrated orthogonal decomposition of the normalized
vector, x̃, ỹ and z̃ are corrected values, C are linearity
calibration constants, B — multiplicative constants, A
— additive constants and O — orthogonality constants.
The goal of the calibration procedure is to find these
calibration constants using the one-layer neural network
working above the set of input vectors represented by the
measured x, y and z values of the decomposition. Similar
principle is discussed in [5], where a method working in
real time is used, but the method has worse quality of
convergence. For example it is not possible to decorre-
late the data, to random ordering of the samples or to
center the data. The iteration procedure uses the back-
propagation algorithm [6] based on the gradient descent
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methodology, in which the error function E in the k-th
step of the learning process is

Ek =
1

2

(
T k − 1

)2
, (2.2)

where T is a normalized module of the magnetic induc-
tion vector

T k =

√
(x̃k)

2
+ (ỹk)

2
+ (z̃k)

2 ≈ 1. (2.3)
In the beginning the calibration constants are implicitly
set to the following values: C = 0, B = 1, A = 0 and
O = 0. Increments of each constant in the k-th step of
the learning process are in general defined as:

∆Kk
i = −α ∂E

∂Ki

∣∣∣∣
k

, (2.4)

where α represents velocity and stability of the learning
process. In our case it was set to 0.01.

3. Experiment

The experiment was performed in the Slovak Organiza-
tion for Space Activities (SOSA) laboratory in Bratislava.
For the calibration a three-axial system of the Helmholtz
coils with the sensitivities experimentally determined ac-
cording to the [7] was used. The precision of the gener-
ated field was ±0.1 µT. The main task of this coil sys-
tem is to create n vectors, the attractors of which created
points equally distributed on the sphere surface to obtain
the constant magnetic induction module of 60 µT. The
Earth magnetic field was suppressed in several steps.

In the first one the Earth magnetic field components
using the vector magnetic analyzer (VEMA) relaxation
magnetometer [8] positioned into the two axes of the coils
applying of the current reversing in the Helmholtz coils
were determined. Subsequently vectors corrected in re-
gard to the measured Earth magnetic field using the ap-
propriate methodology were generated. The data were
uniformly distributed on the surface of a sphere. The
principle is based on horizontal slicing of the sphere, so
each slice has the same area. One point is placed on
each sliced sphere surface, so they do not create clus-
ters. These fields representing the first dataset with 200
vectors of the field were measured by the satellite mag-
netometer. In the second step we turned the satellite
magnetometer by 180◦ around the z axis and flipped
the excitation currents in the x and y axes. The sec-
ond dataset containing 200 vectors was then obtained.
In the third step the procedure was repeated for the
magnetometer turn around the y axis in regard to the
initial position and the directions of the excitation cur-
rents in the x and z axes were flipped. From these 3 po-
sitions one file comprising averaged values representing
the training set for the neural network with suppressed
the influence of the Earth magnetic field as a residuum
resulting from the vector VEMA magnetometer inaccu-
racies was created. Without the precise mechanical po-
sitioning of the satellite it is not possible to suppress the
remaining Earth magnetic field components. The mea-
sured data were normalized, sequentially averaged over

4 samples and randomly reordered. Finally the learning
process using Eqs. (2.1)–(2.4) on the training set was re-
peatedly performed. The comparison of the normalized
linear errors during the calibration procedure is visual-
ized in Fig. 2.

Fig. 2. Comparison of the normalized linear errors cal-
culated from the uncalibrated data (δm) and data cor-
rected during the learning process (δc).

The normalized linear error δ is defined as:
δk = T k − 1. (3.1)

Values of the normalized calibration constants after the
convergence achievement are summarized in Table I.

TABLE I

Overview of the determined normalized calibration
constants.

Channel
Calibration constant

C B A O

X 0.0020 1.0193 –0.4535 —
Y 0.0015 1.1066 –0.0300 0.0992(Oyx)

Z 0.0079 1.1037 0.0641 –0.0118(Ozy),
–0.0165(Ozx)

The experimentally determined normalized linear er-
ror of the non-calibrated sensor varies from –0.4267 to
0.4780, which represents the absolute peak-to-peak er-
ror of 54.279 µT. After the calibration process the error
varies in the range from –0.0060 to 0.0045 representing
the peak to peak value of 0.630 µT. The standard de-
viation of the scalar T value before the calibration was
15.342 µT and after the calibration process it was re-
duced to 0.103 µT. The residual error of the calibrated
sensor has its origin probably in the internal sensor noise.
The noise standard deviation σN of the sensor is accord-
ing to the datasheet 0.15 µT for each channel. After the
data averaging through the 4 samples the noise standard
deviation is suppressed according to the relationship
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σN =
0.15√

4
= 0.075 [µT] . (3.2)

Considering the same noise in all three axes, the scalar
value of the noise can be calculated as

σS =
√
σ2
N + σ2

N + σ2
N = 0.130 [µT] . (3.3)

In regard to the statistical character of the parameters
listed in the datasheets it can be concluded that the error
after calibration approximates to its limiting value rep-
resented by the inherent noise of the sensor. In Fig. 3
measured and in Fig. 4 calibrated data on the sphere
surface are visualized.

Fig. 3. A global map of errors of the uncalibrated sen-
sor.

Fig. 4. A global map of errors of the calibrated sensor.

4. Conclusions

From the performed experiment results it can be stated
that the precision of the non-calibrated HMC 5883L sen-
sor is as big as 71.9◦ in the heading, mainly due to the
additive errors. The same sensor with the additive com-
pensation achieves the precision of 6.0◦ and after the ap-
plication of all calibration constants to the inverse model
the heading can be determined with the precision of 2.9◦

in the worst case. The experiment confirmed that neu-
ral networks are convenient for the calibration of the on
board vector magnetometer of the small satellite. Af-
ter the calibration process the sensor performance is in-
fluenced only by the random errors with the statistical
character. This fact was confirmed also by the random
placement of the calibrated sensor errors on the sphere
surface. It can be concluded that the inverse model was
chosen correctly because the systematic errors were sup-
pressed significantly.
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