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Effect of Stochastic Dynamics
on the Nuclear Magnetic Resonance in a Field Gradient

J. Tóthováa,∗ and V. Lisýa,b

aDepartment of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Park Komenského 2, 042 00 Košice, Slovakia

bLaboratory of Radiation Biology, Joint Institute for Nuclear Research, 141980, Dubna, Russia

In the present contribution, the attenuation function S(t) for an ensemble of spins in a magnetic-field gradient
is calculated through an accumulation of the phase shifts in the rotating frame resulting from the changes of the
particle displacements. The found S(t) is applicable for any kind of the stochastic motion of spins, including their
non-Markovian dynamics with memory. Depending on the considered system, both the classical expressions valid
for normal diffusion at long times and new formulae for the short-time Brownian motion can be obtained. Our
method is also applicable to the NMR pulse sequences based on the refocusing principle. This is demonstrated by
describing the spin echo experiment developed by Hahn.
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1. Introduction

Nuclear magnetic resonance (NMR) has proven to be
an effective means of studying molecular self-diffusion
and diffusion in various materials and has a wide range of
applications ranging from characterization of solutions to
inferring microstructural features in biological tissues [1–
5]. The influence of diffusion on the signal of the NMR
experiment, such as the spin echo, is described by the dif-
fusion suppression functionS(t). In the literature, S(t) is
usually calculated by using the Bloch–Torrey equation
for the spin magnetization. Another way is to evaluate
S(t) through the time-dependent resonance frequency off-
set in the rotating frame, which is expressed through the
position x(t) of the nuclear spin [3, 4]. It is assumed
that x(t) is a Gaussian random process. The known
results in both the approaches are, however, valid only
within the long-time (diffusion) approximation and are
inapplicable for shorter times of the stochastic motion of
spin-bearing particles, except the standard (memoryless)
Langevin theory [5, 6].

No correct formulae are available for the attenua-
tion function S(t) describing the effect of the Brown-
ian motion in the NMR experiments on systems in a
magnetic-field gradient that would take into account pos-
sible memory effects in the dynamics of spins. The re-
cent attempt [4] to overcome this limitation operates with
the positional autocorrelation function (PAF), which is
not defined for unbounded particle motion, described by
the standard or generalized Langevin equation. In the
present contribution, the function S(t) for an ensemble
of spins in a magnetic-field gradient is expressed through
an accumulation of the phase shifts in the rotating frame
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due to the changes of the particle displacements. Instead
of the PAF, we deal with the mean square displacement
(MSD) X(t), the well-defined and experimentally mea-
sured function. The obtained new formulae for S(t) and
the NMR line broadening due to the particle motion in a
simple experiment, when the nuclear induction signal is
read-out in the presence of a field gradient, significantly
differ from the known ones and are applicable for any
kind of the stochastic motion of spins, including their
non-markovian Brownian motion and anomalous diffu-
sion. The classical expressions valid for diffusion are just
special cases within our consideration that can be eas-
ily obtained within the long-time approximation. The
method is also applicable to the NMR pulse sequences
based on the refocusing principle. This is demonstrated
by describing the spin echo experiment developed by
Hahn.

2. Nuclear induction signal in the presence of a
magnetic-field gradient

Let us consider an experiment, in which the nuclear in-
duction signal is read-out in the presence of a magnetic-
field gradient [4]. The liquid or gaseous system is in a
sufficiently strong external field and the gradient is uni-
directional. The magnetization of an ensemble of spins is
modulated by the gradient and the measurement of time
evolution of this magnetization possesses the molecular
self-diffusion coefficient D. The total magnetization de-
termining the observed NMR signal is given by the prod-
uct of the magnetization without the influence of diffu-
sion and the diffusion suppression function S(t). This
function can be expressed as [2–7]:

S(t) = 〈exp (iφ(t))〉 =
〈
exp

(
i

∫ t

0

ω(τ)dτ

)〉
, (1)

where ω(t) is the time-dependent resonance frequency off-
set in the rotating frame and the brackets 〈. . .〉 indicate
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an ensemble averaging. In the literature, see, e.g., [3, 8],
the relation ω(t) = γngx(t) is used, where g is the applied
gradient strength, γn is the nuclear gyromagnetic ratio,
and x(t) is the position of the spin after time t. Then,
for a Gaussian random process,

S(t) = exp
(
− (1/2)

〈
φ2(t)

〉)
, (2)

and, taking into account stationarity,

S(t) = exp

(
−γ2ng2

∫ t

0

〈x(t′)x(0)〉 (t− t′)dt′
)
. (3)

Substituting here 〈x(t)x(0)〉 ≈ 2Dt as the PAF [4], the
classical “textbook” expression for the diffusion suppres-
sion is obtained,

S(t) = exp
(
− (1/3) γ2ng

2Dt3
)
. (4)

However, beyond the t → ∞ limit this approach is
not applicable. Already within a more general stan-
dard Langevin theory for unbounded Brownian motion
the PAF is ill defined [9]. The incorrectness of Eq. (3) is
seen also from the following physical view. Let the spin-
bearing particles are trapped in a harmonic well with the
elastic constant k. At short times the motion of the par-
ticles is not affected by the trap. It is thus no reason
that the influence of the trap would be reflected in S(t).
However, S(t) from (3) is at t → 0 determined mainly
by k, since

〈
x2
〉
≈ kBT/k [10].

The quantity that should be used in the description
of the influence of stochastic motion of spins on the
NMR experiments is the MSD, X(t) =

〈
[x(t)− x(0)]2

〉
.

The normal diffusion MSD at t → ∞ tends to infinity
as 2Dt, which is not consistent with the approximation
〈x(t)x(0)〉 ≈ 〈x(t)x(t)〉 = 2Dt [4]. In Eq. (1), ω(t) should
be ω(t) = γng (x(t)− x(0)), the change of the phase in
the rotating frame during the time t, instead of the phase
given by the spin position at time t. The discussed con-
troversy is then naturally resolved as follows. For the
Gaussian random processes (or small φ) we use Eq. (2),
where now〈

φ2(t)
〉
=

∫ t

0

∫ t

0

dt′dt′′ 〈ω(t′)ω(t′′)〉 = (1/2)γ2ng
2

×
∫ t

0

∫ t

0

dt′dt′′ (X(t′) +X(t′′)−X(t′′ − t′)) . (5)

Since for stationary processes X(t) is a symmetric func-
tion, we can use the following transformation:∫ t

0

∫ t

0

dt′dt′′X(t′′ − t′) = 2

∫ t

0

dt′ (t− t′)X(t′). (6)

Equations (6), (5) and (2) then give the final simple re-
sult

S(t) = exp

(
−(1/2)γ2ng2

∫ t

0

τX(τ)dτ

)
, (7)

which is model-independent, applicable for any times and
a character of the stochastic motion of spins. Most of-
ten, the normal (Einstein) diffusion is observed in liquids
and gases. Then, at long times, X(t) ≈ 2Dt and we
return to the classical formula (4). The measured spec-
tral line broadening due to diffusion (half width at half
maximum) is ω1/2 ≈

√
6a1/3, where a ≈ γ2ng

2D/3 [11].

At short times, the motion of particles is ballistic [12],
X(t) ≈ kBTt

2/M as t → 0 (M plays a role of the parti-
cle mass), so that

S(t) ≈ exp
(
−kBTγ2ng2t4/8M

)
(8)

and ω2
1/2 ≈ 4Γ (5/4)Γ−1(3/4)

(
kBTγ

2
ng

2/8M
)1/2.

Usually, the suitable description of the NMR experi-
ments corresponds to long times. In Ref. [4], the stochas-
tic motion of spins in gases was described by using the
generalized Langevin equation, in which the friction force
was modeled by the convolution of a memory kernel with
the particle velocity. The kernel exponentially decreased
in time. The induction signal has been obtained by us-
ing Eq. (3) for long times as S(t) ≈ exp

(
−γ2ng2κt

)
, where

κ = kBTM
2γ−3 (γ is the Stokes friction coefficient pro-

portional to the gas viscosity). Since at high tempera-
tures the viscosity of gases is ≈ T 1/2, the authors con-
clude that ω1/2 ∼ T−1/2. This prediction is not correct,
since the MSD within the used theory behaves at long
times as X(t) ≈ 2Dt, the diffusion attenuation function
is given by Eq. (4), and, consequently, ω1/2 ∼ T 1/6.

3. Hahn spin echo

Modern NMR pulse sequences come from the sim-
ple refocusing principle of the spin echo developed by
Hahn [13]. In this experiment, at time t = τ after the
first 90◦ rf pulse at t = 0 the spin phases are inverted by
a 180◦ pulse. Measurements of the echo signal amplitude
at time 2τ allow accurate determining of the diffusion
coefficients of nuclear spins. During the experiment, a
static magnetic field that creates macroscopic magneti-
zation along the axis x and a constant linear magnetic
field gradient g are applied. Acting as in the previous
section, we express the attenuation of the signal due to
the stochastic motion of spins (2) through the accumula-
tion of the changes of spin phases φ(t). Instead of Eq. (5)
we now have〈

φ2(t)
〉
=

γ2ng
2

〈[∫ τ

0

(x(t′)− x(0)) dt′

−
∫ t

τ

(x(t′)− x(0)) dt′
]2〉

. (9)

The sign before the second integral accounts for the fact
that at time τ all phases are inverted. Equation (9) can
be again expressed through the MSD. After the averag-
ing and use of the stationarity condition one finds〈

φ2(t)
〉 /
γ2ng

2 =

∫ t

0

dt′(t′ − 2τ)X(t′)

+2

∫ τ

0

dt′(2t′ − t)X(t′)

+2

∫ t

0

dt′
∫ τ

0

dt′′X(t′ − t′′). (10)

Other equivalent forms of Eq. (10) are possible as well.
In the special case of the Einstein–Fick diffusion we get
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from Eqs. (10) and (2) at t = 2τ the famous Stejskal–
Tanner formula [14]:

S(2τ) = exp
(
−2γ2ng2Dτ3/3

)
. (11)

At arbitrary t > τ :
S(t) = exp

(
−γ2ng2D(t3 − 6tτ2 + 6τ3)/3

)
. (12)

It is interesting that the maximum of the function S(t)
is not at the echo time 2τ but at t =

√
2τ . This result

has been for the first time obtained and experimentally
verified in [3].

4. Anomalous diffusion of spins

It is important that the obtained general formulae for
the NMR induction decay and spin echo are applicable
for any kind of the Brownian motion of spin-bearing par-
ticles. At long times, they can be used to interpret the ex-
periments on system exhibiting both normal and anoma-
lous diffusion.

Let us assume that at long time the MSD satisfies
the formula X(t) = Ctα, where C is a temperature-
dependent constant, α = 1 corresponds to normal dif-
fusion (then C = 2D), α < 1 to sub-diffusion, and α > 1
to super-diffusion [15]. In Ref. [16], the expressions for
the attenuation of the NMR signal due to anomalous dif-
fusion were obtained assuming that X(t) is equal to the
mean square distance

〈
x2(t)

〉
. Here, without this as-

sumption, it is easy from (10) to find
〈
φ2(t)

〉
that deter-

mines the damping of the spin echo signal and general-
izes (12). At the echo time it reduces to a simple formula
obtained in [16] in a much more tedious way〈

φ2(2τ)
〉
= 4γ2ng

2C (2α − 1)
τα+2

(α+ 1) (α+ 2)
. (13)

After substituting it in Eq. (2), at α = 1 we return to
Eq. (11).

5. Conclusions

For many experimental situations the description of
the diffusion-based NMR experiments needs to properly
take into account the stochastic motion of spins, which
can be very different. Often the memory in the particle
dynamics plays a significant role [12]. In such cases, the
existing theories are suitable only at long times, when
the particles are in the diffusion regime. We have shown
that the attempt [4] to account for the memory effects
as they are revealed at shorter times was not successful.
In the present work, the attenuation function due to the
stochastic motion of spin-bearing particles is evaluated
for two examples: when the nuclear induction signal is
measured in the presence of a field gradient, and for the
Hahn spin echo experiment with a steady gradient. The
observed damping of the signal is calculated through
the accumulation of the spin phases in the frame rotating

with the resonance frequency. Coming from the changes
of the phases during the time of observation, this ac-
cumulation is represented through the mean square dis-
placement for stationary and Gaussian random processes.
The obtained formulae give known results in the case of
normal and anomalous diffusion but its main application
is aimed for systems described by other models, e.g., by
the standard Langevin equation or its various generaliza-
tions.
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