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In the paper the thermodynamics of a cubic cluster with 8 sites at quarter filling is characterized by means of
exact diagonalization technique. Particular emphasis is put on the behaviour of such response functions as specific
heat and magnetic susceptibility. The system is modelled with extended Hubbard model which includes electron
hopping between both first and second nearest neighbours as well as Coulombic interactions, both on-site and
between nearest-neighbour sites. The importance of hopping between second nearest neighbours and Coulombic
interactions between nearest neighbours for the temperature dependences of thermodynamic response functions is
analysed. In particular, the predictions of the Schottky model are compared with the calculations based on the
full energy spectrum.
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1. Introduction, model and method

The Hubbard model and its extensions, being funda-
mental models for strongly correlated systems, still con-
stitute a challenge and their thermodynamics attracts
considerable attention [1–9]. The exact thermodynamic
solutions are known only for a limited range of sys-
tems, including zero-dimensional ones, for which exact
diagonalization can be performed [10–15], albeit this ap-
proach requires significant computational resources. In
the present study we deal with a cubic, zero-dimensional
cluster consisting of 8 atoms (sites) filled with 4 electrons
(which constitutes quarter-filling case). It is described by
the following Hamiltonian of extended Hubbard model:

H = −t1
∑

〈i,j〉,σ

(
c†i,σcj,σ + H.c.

)
− t2

∑
〈〈i,j〉〉,σ

(
c†i,σcj,σ + H.c.

)
+U

∑
i

ni,↑ni,↓ + V
∑

〈i,j〉,σ,σ′

ni,σnj,σ′ . (1)

Here, t1 and t2 denote the hopping integrals between
nearest-neighbours (NN) and second NN, respectively,
while U is the on-site Coulombic interaction energy and
V is the energy of Coulombic interaction between elec-
trons at NN sites. The operators c†i,σ (ci,σ) create (an-
nihilate) the electron with spin σ =↑, ↓ at site i and
ni,σ = c†i,σci,σ. In order to solve our model, we exploit the
exact diagonalization approach, which we have already
developed in [10] for analogous cluster. The eigenvalues
and eigenvectors of the Hamiltonian matrix are calcu-
lated with Wolfram Mathematica software [16]. Further
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thermodynamic analysis is performed within canonical
ensemble formalism [10], which is based on determina-
tion of statistical sum for the system, from which all fur-
ther thermodynamic quantities can be derived [10]. In
the present study we focus our interest on specific heat
and magnetic susceptibility of the system.

It has been established in our earlier study [10] that the
temperature dependence of specific heat exhibits double-
peak structure, while the analogous dependence of mag-
netic susceptibility shows a single peak. The sensitivity
of those maxima to the value of on-site Coulombic energy
U was discussed and a good applicability of the Schot-
tky model was found. The aim of the present study is to
analyse the importance of t2 and V (which parameters
extend the usual Hubbard model) on the behaviour of
thermodynamic response functions such as specific heat
and magnetic susceptibility. The Schottky model, being
a useful tool for understanding the thermodynamics of
zero-dimensional systems [10, 17], is also worthy of in-
vestigation in that context.

2. Numerical results and discussion

Let us commence the analysis from the influence of the
hopping between second NN on the thermodynamic pa-
rameters. We consider the range of 0 < t2 < t1, which
seems physically justified. The effect of second NN hop-
ping on the specific heat can be followed in Fig. 1a,b. As
it is visible in Fig. 1a, for U/t1 = 1.0, the presence of t2
affects the positions of both low- and high-temperature
maximum of the specific heat. The first one tends to
shift towards lower temperatures, while the second one
exhibits an opposite tendency. Both shifts are quite sig-
nificant (please note the logarithmic scale). For very
strong t2 a third, intermediate maximum tends to build
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up, but with rather reduced height. On the contrary, for
the case of U/t1 = 5.0, illustrated in Fig. 1b, only the
high-temperature peak of specific heat is sensitive to t2,
while the low-temperature maximum shows no tendency
to shift and the intermediate maximum appears.

Fig. 1. Temperature dependence of specific heat (a,b)
and magnetic susceptibility (c,d) for various ratios of
hopping between second NN and NN, for U/t1 = 1.0
and 5.0.

The behaviour of magnetic susceptibility is illustrated
in Fig. 1c,d. The single maximum tends to shift towards
lower temperatures when t2 increases only for the lower
value of U/t1 = 1.0, whereas it does not move for U/t1 =
5.0. Therefore, the behaviour of susceptibility maximum
follows the trend for the low-temperature peak of the
specific heat.

Fig. 2. Temperature dependence of specific heat (a,b)
and magnetic susceptibility (c,d) for various energies of
Coulombic interaction between NN, for U/t1 = 1.0 and
5.0.

The influence of coulombic interaction between elec-
trons located at NN sites is again studied for the physi-
cally relevant range of 0 < V < U .

The effect of introducing V > 0 can be followed in
Fig. 2a,b for specific heat. When U/t1 = 1.0 (Fig. 2a),
the low-temperature peak exhibits high mobility and be-
comes shifted towards higher temperatures, by approxi-
mately order of magnitude. On the contrary, the posi-
tion of the second, high-temperature maximum remains
untouched. Both extrema also tend to conserve their
heights. The behaviour of specific heat for U/t1 = 5.0, as
shown in Fig. 2b, is more complex. The high-temperature
peak is strongly shifted towards higher temperatures. On
the contrary, the position of low-temperature maximum
shows a non-monotonic dependence on V/t1, with ini-
tial increase and further return to lower values of Tmax.
Moreover, the height of this extremum also varies, since
for higher V it becomes more pronounced. At the same
time, at moderate values of V/t1, the specific heat at

intermediate temperatures between the peaks is also sig-
nificantly elevated, which effect vanishes when V further
increases.

The evolution of the temperature dependence of mag-
netic susceptibility with varying V is shown in Fig. 2c,d.
For U/t1 = 1.0 (Fig. 2c) the maximum shifts very signif-
icantly towards higher temperatures when V is switched
on and simultaneously its height is greatly reduced. The
situation is changed when U is stronger, i.e. for U/t1 =
5.0, as seen in Fig. 2d. There, the position of maximum
depends non-monotonically on V (similarly to the de-
pendence of low-temperature maximum of specific heat,
with initial increase and further decrease of Tmax). More-
over, the value of susceptibility at extremum is reduced
for moderate V/t1 and it rises back when V becomes
stronger.

Fig. 3. The position of the low-temperature maximum
of specific heat and the maximum of magnetic suscep-
tibility together with the predictions of Schottky model
(left vertical scale) and the energy gap between ground
state and first excited state (right vertical scale) as
a function of Coulombic interactions between NN, for
U/t1 = 5.0.

Fig. 4. The energies of the states lying close to the
ground state as a function of the Coulombic interactions
between NN, for U/t1 = 5.0. The energy of the ground
state is set to zero.
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Our previous study [10] revealed that the low-
temperature maximum of specific heat and the maxi-
mum of susceptibility can be explained by referring to
the Schottky model, involving the ground state and the
first excited state, separated with an energy gap ∆. The
relation between the energy gap and the positions of both
extrema Tmax was derived in our work [10] for our system
of interest.

The detailed dependence of the position of the men-
tioned extrema Tmax on V for U/t1 = 5.0 can be fol-
lowed in Fig. 3. Such a choice corresponds to Fig. 2,
where a non-monotonic behaviour as a function of V was
seen. This behaviour is confirmed in Fig. 3, where the
temperature at which the extremum is reached achieves
largest values around 2.4 . V/t1 . 2.6. For compari-
son, the normalized energy gap between the ground state
and the first excited state is plotted in the same figure.
The Schottky model predicts that the temperature Tmax

should be proportional to ∆ (see [10]) and the predic-
tions of Tmax based on [10] for specific heat maximum
and susceptibility maximum are also indicated in Fig. 3
(with circles). It is visible that for V/t1 < 2 the consis-
tency between the Schottky model and the calculations
involving the full energy spectrum of the system is very
good. However, for stronger V a discrepancy arises and
the maximum of Tmax with respect to V/t1 is reached at
higher V than the Schottky model shows.

This kind of behaviour can be explained on the basis of
Fig. 4, which shows the dependence of energies of a few
states lying close to the ground state on V . For low V ,
the separation in energy between ground state and the
first excited state is much smaller than the energy differ-
ence between first and second excited state. Therefore,
the conditions for Schottky approximation are well ful-
filled. When V rises, the second excited state gets closer
to the first one and its contribution grows, yielding the
discrepancy between the predictions of Schottky model
and exact calculations.

Fig. 5. The energy gap between the ground state and
the first excited state as a function of the energy of on-
site Coulombic interactions and Coulombic interactions
between NN.

The evolution of the energy gap as a function of U/t1
and V < U can be followed in Fig. 5. It is evident that
the gap tends to reach a maximum value at some low,
but non-zero V/t1, which is almost independent of U/t1.
Moreover, the maximum gap value at this V/t1 is weakly
sensitive to U/t1 unless it is very low. Therefore, the
behaviour illustrated for U/t1 = 5.0 is representative also
to higher values of U .

3. Conclusions

The study revealed the sensitivity of peaks of specific
heat and magnetic susceptibility to such extended Hub-
bard model parameters as t2 and V at quarter filling for
a cubic cluster. The magnitude of the influence depends
vitally on the value of U . The conditions for applicability
of the Schottky model were established. Futher studies
of clusters with other geometry are well motivated.
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