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Transport and magnetic properties of polycrystalline Tm0.03Yb0.97B12 samples were investigated at temper-
atures 1.8–300 K in magnetic fields up to 9 T. The activated behavior of resistivity, the Hall coefficient and
thermopower is described in terms of a narrow gap εg ≈ 16.6 meV, which controls the charge transport in
Tm0.03Yb0.97B12 at T > 40 K. The maximum of magnetic susceptibility found at 50 K is shown to be induced by a
spin gap ∆ ≈ 4.7 meV being close to the half of the spin fluctuation energy in YbB12. Large diffusive thermopower
S = AT , A = −29.1 µV/K2 and the Pauli susceptibility χ0 ≈ 7.2×10−3 emu/mol found below 20 K seem to be as-
sociated with the many-body resonance, which corresponds to states with an enhanced effective mass m∗ ≈ 250m0

(m0 — free electron mass). The effective parameters of magnetic centers and the analysis of anomalies favor the
nonequivalent states of substitute Tm ions.
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1. Introduction

The nature of the narrow gap (εg ≈ 17.8 meV [1, 2])
in YbB12, which shares the place between antiferromag-
netic metal TmB12 [3] and superconducting LuB12 [4] in
the set of rare-earth dodecaborides RB12, stays a subject
of discussions [1–3, 5–11]. The ground state of YbB12

identified usually as the Kondo insulator [1] seems to
have a non-trivial topology of the band structure result-
ing in surface conductivity [5]. However, studies of Lu-
doped and Zr-doped YbB12 show that the gap in the
YbB12 band spectrum is local and is not influenced by
the onset of long-range coherence [6, 7]. Recent studies of
TmxYb1−xB12 single crystals [8–10] pointed out that the
rise of Yb content results in a metal–insulator transition,
a bulk narrow many-body resonance (∆ ≈ 6 meV) ap-
pears at the Fermi level. The band spectrum renormal-
ization seen from the thermopower enhancement (from
S = −2 µV/K for TmB12 up to S = −230 µV/K
for Yb0.81Tm0.19B12 [8]) is suggested to be induced by
the Yb3+–Yb3+ dimer formation. This assumption may
be proved by a study of Yb-rich samples (x < 0.19),
which were not available for the transport studies up to
now [9–11].

2. Experimental methods

To shed more light on the nature of the ground state of
such a system, transport and magnetic properties of the
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Tm0.03Yb0.97B12 substitutional solid solution were stud-
ied. High purity polycrystalline Tm0.03Yb0.97B12 sam-
ples were grown by crucibleless inductive zone melting
in argon atmosphere. Any secondary phases were ex-
cluded by X-ray diffraction analysis. The real thulium
content in the solid solution estimated from EPMA study
(x ≈ 0.04) was found to exceed slightly the nominal one.
A five probe method was used to measure resistivity and
Hall effect at temperatures 2–300 K in magnetic fields up
to 8.2 T. The Seebeck coefficient was studied at temper-
atures 3–300 K by the original 4-probe technique with a
step-by-step temperature gradient sweeping at fixed tem-
perature [8]. The temperature and field dependences of
magnetization were measured with the help of Quantum
Design PPMS-9 setup.

3. Results and discussion

Transport properties of Tm0.03Yb0.97B12 are summa-
rized in Fig. 1. Lowering of temperature results in
a monotonous increase of resistivity (Fig. 1a), which
changes from ρ(300 K) ≈ 440 µΩ cm to ρ(2 K) ≈
9.6 mΩcm. The large inverse resistivity ratio IRR =
ρ(2 K)/ρ(300 K) ≈ 22 as compared to IRR ≈ 9.3 for
Tm0.19Yb0.81B12 single crystal [9] proves the high quality
of samples under investigation. At T > 100 K the resis-
tivity is well described by the thermal activation law ρ ∼
exp(−ER/T ) with a characteristic energy ER ≈ 75.3 K.
The ER value is considerably lower than those ones es-
timated for the Hall constant (EH ≈ 96.7 K) and the
Seebeck coefficient (ES ≈ 173 K). The EH value gives
a correct estimation of the gap size in Tm0.03Yb0.97B12

(εg = 2EH ≈ 16.6 meV). The same signs of the Hall and
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Seebeck effects (Fig. 1c,d) prove the major electron con-
tribution to charge transport while the negative magne-
toresistance ∆ρ/ρ = (ρ(H)−ρ(0))/ρ(0) points to a domi-
nant magnetic scattering of charge carriers. However, the
discrepancy between the EH and ES values (EH < ES)
cannot be explained by the difference between the mobil-
ities of holes and electrons in the intrinsic semiconductor
model.

Fig. 1. Resistivity ρ (a), magnetoresistance ∆ρ/ρ (b),
the Hall constant RH (c) and thermopower S (d) of
Tm0.03Yb0.97B12. Solid lines correspond to the activa-
tion asymptotics (see text). The dash-dotted line in part
(d) shows the linear S(T ) fit with A = −29.1 µV/K2.
The vertical dashed line marks the position of S(T ) min-
imum (see also Fig. 3).

The saturation of resistivity and Hall constant be-
low 10 K (Fig. 1a,c) is followed by an emergent fea-
ture of thermopower, which passes through a minimum
S ≈ −560 µV/K at T = 20 K and rises as S ∼ AT with
A = −29.1 µV/K2 when temperature decreases (Fig. 1d).
The extreme value of the Hall constant at T ≈ 10 K
(Fig. 2c) appears due to contribution from the anoma-
lous Hall effect identified clearly from the field depen-
dences of the Hall resistivity. This contribution does not
exceed 5.6 µΩ cm and will be discussed elsewhere.

The temperature dependence of the magnetic suscepti-
bility calculated from M(T, 0.1T ) magnetization data as
χ = M/H shows a non-monotonous behavior with low-

temperature upturn (Fig. 2a). At T > 40 K the χ(T )
data can be well fitted by the spin gap model χS(T ) =
χS0 + CS/T exp(−∆/T ) applied earlier for the relative
compound SmB6 [12]. The spin gap size ∆ ≈ 54.7 K
is approximately equal to the half of the spin fluctua-
tions temperature in YbB12 (Tsf ≈ 100 K) [11] and is
comparable with the binding energies of in-gap many-
body states (Ea = 65±10 K) detected in Tm1−xYbxB12

(x < 0.19) [9]. The Curie constant Cs ≈ 1.77 emu K/mol
corresponds to the effective moment µeff ≈ 3.8 µB (µB

— Bohr magneton), which is considerably lower than the
respective free Yb3+ ion value µeff ≈ 4.5 µB.

Fig. 2. (a) Molar susceptibility χ(T ) of
Tm0.03Yb0.97B12 calculated from the M(T, 0.1T )
magnetization data. Solid and dashed lines represent
the fits within spin gap and the Curie–Weiss models
(see text). (b) Isothermal magnetization M(H, T0) of
Tm0.03Yb0.97B12 measured at T0 = 1.85, 2.3, 3.1, 4.2,
6, 8, 10, 15, 20, and 40 K. Dash-dotted lines in parts (a)
and (b) show the contributions from low-temperature
Pauli susceptibility χ0 ≈ 7.2×10−3 emu/mol.

Below 20 K magnetic susceptibility follows the Curie–
Weiss law χCW = C0/(T−Θ) with C0 ≈ 0.13 emu K/mol
and Θ ≈ −1.0 K, which is biased by the tempera-
ture independent contribution χ0 ≈ 7.2 × 10−3 emu/mol
(Fig. 2a). The χ0H term agrees well with the high field
trend of the M(H,T < 4 K) data (Fig. 2b). The cor-
rect estimation of χCW and χ0 is also proved by the
scaling of saturated magnetization M − χ0H as a func-
tion of H/(T − Θ) being valid for T < 20 K (not
shown here). Note that a similar procedure has been
successfully applied to separate different contributions
to the magnetization of the Tm1−xYbxB12 solid solu-
tions for x < 0.19 [10]. The straightforward calcula-
tion for Tm0.03Yb0.97B12 results in the saturated moment
µS ≈ 7.3 µB and the effective concentration of centers
N0 ≈ 0.02 (per formulae unit).
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The correlated behavior of transport and magnetic
properties for Yb-rich dodecaborides can be clearly es-
tablished from the temperature behavior of the difference
χ(T )−χCW(T ) (Fig. 3a) and from effective parameters of
charge carriers (Fig. 3b,c). Indeed, the electron concen-
tration estimated from the Hall constant as n = (RHe)

−1

can be well fitted by the combination of a thermally ac-
tivated contribution n(T )/nRE = n1 exp(−EH/T ) with
nRE = 9.6 × 1021 cm−3 and n1 = 0.92 and a tempera-
ture independent addition n0 = 0.016 per rare-earth ion
(Fig. 3c). The crossover temperature T0 ≈ 20 K matches
perfectly the positions of the electron mobility maximum
(Fig. 3b) and the maximal amplitude of the Seebeck ef-
fect (Fig. 1d). Besides, the ∆χ = χ(T ) − χCW(T ) con-
tribution increases rapidly below T0 approaching the es-
timated χ0 value (Fig. 3a).

Fig. 3. The difference ∆χ = χ(T ) − χCW(T ) (a), the
Hall mobility µH (b), and concentration of charge car-
riers per formula unit n (c) in Tm0.03Yb0.97B12. The
dash-dotted line in part (a) shows the value of χ0 (see
caption to Fig. 2). The solid line in part (c) corre-
sponds to the n(T )/nRE = n0 + n1 exp(−EH/T ) fit
with n0 = 0.016 and n1 = 0.92. The vertical dashed
line marks the position of |µH(T )| maximum (see also
Fig. 1).

In our opinion, the low temperature anoma-
lies of charge transport and magnetic properties of
Tm0.03Yb0.97B12 can be well understood in terms of a
temperature induced transformation of the band spec-
trum discussed earlier in [8–10]. Indeed, a straightfor-
ward calculation of the density of states at the Fermi level
using standard expressions for diffusive thermopower AT
and the Pauli susceptibility χ0 results in N(εF ) ≈ 4.9 ×
1035 erg−1 cm−3 and N(εF ) ≈ 5.7 × 1035 erg−1 cm−3,
respectively. Within the single electron model these val-
ues correspond to an extremely large effective mass of
charge carriers m∗ ≈ 250m0. The estimated relaxation

time τ = m∗µH/e ≈ 0.6 ps agrees well with inverse va-
lence fluctuation rate τ ≈ 0.4 ps estimated from optical
and neutron studies [2, 11]. Finally, the very good cor-
relation between the sum N0 + n0 ≈ 0.036 and the Tm
concentration (≈ 0.04) favors the nonequivalent states
of substitute ions, which may appear due to their vari-
ous positions in respect of the ytterbium dimers [9, 10].
However, an extended study of the 4f–5d hybridization
effects in Yb-rich compounds is required to prove this
suggestion.
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