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Magnetocaloric properties of Ni(en)(H2O)4SO4 · 2H2O powder were investigated in temperature range from
2 K to 30 K in magnetic fields up to 7 T using isothermal magnetization measurements. The maximum value of the
isothermal entropy change in the field 7 T is about 8 J/(kg K), with a refrigerant capacity of 55 J/kg. Temperature
dependence of the isothermal entropy change under different magnetic fields is in good agreement with theoretical
predictions from crystal electric field parameters.
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1. Introduction

Magnetic coolants made of molecule-based paramag-
netic complexes have become a focus of interest in recent
years owing to their promising application in future cryo-
genic technique [1–3]. The magnetocaloric effect (MCE)
that dictates the capacity of the refrigerants is deter-
mined by the isothermal magnetic entropy change (∆SM )
and the adiabatic temperature change (∆ Tad) induced
by the change of the external field [4, 5].

The title compound Ni(en)(H2O)4SO4 · 2H2O (NEHS)
(en = ethylendiamine = C2N2H8) has been previously
identified as a spin 1 single-molecule magnet with a non-
magnetic ground state introduced by easy-plane single-
ion anisotropy D/kB = 11.6 K and neglecting in-plane
anisotropy E/D = 0.1. The good agreement between the
experimental value of magnetic entropy and the theoret-
ical entropy for spin 1 indicates the absence of a phase
transition to the ordered state below 1.8 K and the crys-
tal field effects play a dominant role for magnetic prop-
erties [6].

In this paper, the magnetocaloric study of powder sam-
ple NEHS, investigated above 2 K is presented.

2. Experimental details

The crystal structure of NEHS is monoclinic (space
group C2/c) with lattice parameters a = 9.523 Å, b =
12.185 Å, and c = 11.217 Å [6]. The crystal structure
of the compound is built of [Ni(en)(H2O)4]2+ cations,
[SO4]2− anions and two water molecules comprising ba-
sic structural units (Fig. 1). The units are mutually con-
nected by a large number of hydrogen bonds forming a
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three-dimensional crystal structure. NEHS has been pre-
pared in the form of blue prisms from an aqueous solution
of nickel sulphate and en in stoichiometric amounts.

Magnetocaloric studies have been performed on pow-
der sample of weight 54.66 mg in the temperature range
from 2 K to 30 K in magnetic fields up to 7 T using
isothermal magnetization curves measured in a commer-
cial Quantum Design SQUID magnetometer.

Fig. 1. Structural unit of NEHS.

3. Results and discussion

Isothermal magnetization curves are shown in Fig. 2.
We can see that a magnetization does not achieve a sat-
uration in magnetic fields up to 7 T. Since no hysteresis
was observed at these temperatures and magnetic fields,
a reversible MCE can be expected.

The isothermal magnetic entropy change ∆SM has
been calculated using the Maxwell relation [7]:

∆SM (T,∆B) =

Bf∫
Bi

∂M (T,B)

∂ T
dB, (1)

where Bi and Bf represent initial and final magnetic
field.
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Fig. 2. Isothermal magnetization curves of NEHS,
temperature step ∆T = 0.5, 1, and 2 K for intervals
2–10, 10–20, and 20–30 K, respectively.

Fig. 3. Temperature dependence of the isothermal en-
tropy change in NEHS under different magnetic field.
Symbols represent −∆SM values obtained from exper-
imental magnetization curves; lines represent −∆SM

values calculated for the S = 1 paramagnet with E/D =
0.1 and D/kB = 11.6 K.

Temperature dependence of −∆SM derived from ex-
perimental magnetization data for Bi = 0 and several
values of Bf is shown in Fig. 3. For comparison, we also
calculated theoretical magnetizations and corresponding
−∆SM values for the S = 1 paramagnet with E/D = 0.1
and D/kB = 11.6 K. It should be noted that theoretical
magnetizations were obtained as average from three prin-
cipal orientations. We observed increasing isothermal
entropy change from lowest temperature up to approxi-
mately 6 K for all changes of magnetic field. On the other
hand, −∆SM values decrease above 6 K. This experimen-
tal behaviour is in good agreement with theoretical pre-
dictions from crystal electric field parameters. Large con-
ventional magnetocaloric effect (−∆SM ≈ 8 J/(kg K))
was observed around 6 K in the magnetic field 7 T. In
order to assert NEHS to work in thermodynamic cycles,
the refrigerant capacity (RC) was estimated using a re-
lation

RC =

Thot∫
Tcold

∆SM ( T ) dT, (2)

where Tcold and Thot denote a working temperature in-
terval of the refrigerant [7] (Fig. 4). We used Tcold = 2 K,
while Thot is a temperature, at which the quantity −∆SM

reaches half of the maximum value, which is a character-
istic parameter for magnetocaloric materials. It can be
seen that RC of the studied sample is close to 55 J/kg
for the maximum external magnetic fields of 7 T.

Fig. 4. Field dependence of the refrigerant capacity in
NEHS.

Fig. 5. Temperature dependence of the entropy in
NEHS. A thick line represents total entropy (lattice and
magnetic contribution) calculated from the experimen-
tal specific heat in B = 0 T. Symbols represent the en-
tropies in magnetic field. For illustration, the horizontal
arrow shows how much the sample is cooled from tem-
perature TINIT during adiabatic demagnetizing from
magnetic field of 7 T, while the vertical arrow shows
the isothermal entropy change during magnetizing to
magnetic field of 7 T.

Temperature dependence of the entropy S(B, T )
shown in Fig. 5, was obtained using a relation S(B, T ) =
STOT (B = 0 T) − |∆SM (B, T )|. The expressions
STOT (B = 0 T) and |∆SM (B, T )| denote a total (lat-
tice and magnetic) entropy, calculated from the experi-
mental specific heat in B = 0 T [6] and absolute values
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Fig. 6. Temperature change in NEHS as a function
of initial temperature during adiabatic demagnetizing
from magnetic field of 1 T (solid black square), 2 T
(open square), 3 T (solid blue circle), 4 T (solid yellow
circle), 5 T (solid red triangle), 6 T (open triangle) and
7 T (red star).

of isothermal entropy changes in applied external mag-
netic field, respectively. We estimated from temperature
dependence of entropy the temperature change as a func-
tion of initial temperature during adiabatic demagnetiz-
ing from magnetic field (Fig. 6). The resulting depen-
dences, −∆Tad vs. initial temeperature, are character-
ized by a maximum, standardly shifting to lower tem-
peratures in lower magnetic fields. It can be seen that
adiabatic demagnetization from field 7 T at an initial
temperature 10 K leads to −∆Tad ≈ 3 K.

4. Conclusions

We studied magnetocaloric properties of the powder
Ni(en)(H2O)4SO4 · 2H2O. The maximum value of the
isothermal entropy change in the field 7 T is about
8 J/(kg K), with a refrigerant capacity of 55 J/kg. Tem-
perature dependence of the isothermal entropy change
under different magnetic fields is in good agreement with
theoretical predictions from crystal electric field param-
eters.
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