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The Magnetic Equation of State and Transport Properties
in Reduced Dimensions
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Basing our considerations on magnetic equation of state applied to the description of magnetic systems of
confined geometry we developed the model of calculations of the electrical resistivity for metallic multilayers. It
was shown that in the transport of charge in ferromagnetic material d-electrons play an important role. The key
parameters in the presented model are: the width of the electron energy band and the shift of the energy level for two
spin orientations as well as the Fermi energy and size of the sample (the thickness of magnetic and nonmagnetic
layers and the total number of layers). The presented results of calculations for temperature dependence of
magnetoresistance are in qualitative agreement with the available experimental data. The model calculations
introduced in this paper can be applied to current-in-plane geometry as well as to current-perpendicular-to-plane
geometry. The calculations are valid within the limitations of the resistor network model.
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1. Introduction

We develop a magnetic equation of state for the re-
duced dimensions [1] in order to calculate the resistance
and magnetoresistance of thin films and multilayers. The
resistance of the single thin metallic layers was calcula-
ted lately by Paja and co-workers [2, 3] for the binary
and ternary alloys [4, 5]. The transport properties for
trilayers and multilayers were considered in [6].

In Ref. [7] it was shown that the origin of the ferro-
magnetism in Fe comes from the indirect coupling of the
predominately localized d-like electrons through a small
number of itinerant d-like electrons. The model sugge-
sts that about 5% of the 3d electrons are in itinerant
bands and 95% are in d-bands which are sufficiently nar-
row to be considered localized. The band calculations of
electronic structure [8, 9] and Fermi-surface measurement
confirm this picture [10].

The main aim of this paper is to construct a sim-
ple model of calculation of magnetoresistance (MR) for
the multilayers. In the literature concerning this sub-
ject most models usually describe trilayers. However, the
multilayer is composed of few or few tens of cells, which
constitutes a complex problem for analytical calculations
of MR.

2. Description of model and results

For a multilayer comprising magnetic layers separa-
ted by nonmagnetic spacers, there are three different re-
sistivities in the superlattice i.e. the resistivity of two
different spin orientations in ferromagnetic (FM) mate-
rial, and resistivity of the non-magnetic (NM) spacer,
which is the same for both spin orientations. In order
to estimate the magnitude of all of these resistivities, we
assume that the conduction electrons have mainly s and
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p character, and they are predominantly scattered into
the d-band. This mechanism is known as the Mott scat-
tering [11–13]. The resistivity of each spin channel is
proportional to the density of states (DOS) at the Fermi
level in the d-band, which is in agreement with the An-
derson model [14].

The magnetoresistance MR is defined as:
MR = (R↑↓ −R↑↑)/R↑↑ (1)

where 1/R↑↑ = (1/R↑ + 1/R↓)↑↑ and 1/R↑↓ =

(1/R↑ + 1/R↓)↑↓, while Rσ is the total resistance in the
spin channel σ. The conduction electrons which behave
as plane waves can mix the channels, therefore they ex-
perience an average resistivity, which in the case of two
components is given as

ρ̄ = (d1ρ1 + d2ρ2)/(d1 + d2). (2)
d1 and d2 are the thicknesses of the layers, and ρ1, ρ2 are
the corresponding resistivities.

The resistance of bilayer including FM and NM layers
can be written as

R↑ = ρ↑dFM + ρNMdNM , (3)

R↓ = ρ↓dFM + ρNMdNM (4)
for spin-up (↑) and for spin-down (↓) orientations. It
is worth to stress here that simple classical summations
of resistances (relations (3) and (4)) are valid only for
incoherent transport.

For parallel magnetization of FM layer, the total mag-
netization of multilayer which is composed of four layer
cells is given by

R↑↑ = N(2R↑R↓)/(R↑ +R↓), (5)
where N is the total number of four-layer cells in a mul-
tilayer, while the total resistance is for antiparallel con-
figuration and it equals

R↑↓ = N(R↑ +R↓)/2. (6)
The magnetoresistance ratio defined by Eq. (1) is given as

MR = (R↓ −R↑)2 /(4R↓R↑). (7)
The mean value of magnetization 〈m〉 for the inhomoge-
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neous system for a thin solid film with the thickness n of
monoatomic layers can be expressed [1] by
〈m〉 = 〈m〉3D + 1

n
(〈m〉2D − 〈m〉3D) ,

where 〈m〉2D and 〈m〉3D represent the mean value of mag-
netization for homogeneous 2D and 3D systems. The
spontaneous magnetization of the Ising two-dimensional
model can be calculated exactly [15] and the value of
magnetization is given as

〈m〉2D =

[
1 + x2

(1− x2)
2

(
1− 6x2 + x4

)1/2]1/4 (8)

where x = e−2J/T (J and T denote the exchange con-
stant and the temperature, respectively). By analogy,
we can write the expression for the spontaneous magne-
tization for a homogeneous 3D system [16] as

〈m〉3D =
[ 1 + x2

(1− x2) (1− x6)

(
1− x2 + 4x4 − x6 + x8

)
×
(
1− x2 − 4x4 − x6 + x8

) 1
2

] 3
4

. (9)

It is usually considered that the conductivity in FM ma-
terials is governed by s and p electrons. It was shown
that in transport of charge in FM materials d-electrons
play an important role [7, 17]. It is worth stressing that
the scattering asymmetry is larger for strong FM metals.
This fact is due to different DOS for spin up and down
orientations at the Fermi level.

The free energy in molecular field approximation for
FM layer can be given as

F (M,N, T ) =

− 1

kBT

∑
k,σ

ln

(
exp

(
− 1

kBT
(Ek − EFσ)

))
−1

2
Jav

∑
k

n2σ +
∑
nσ

nσEFσ + coupling. (10)

In the last formula the symbols mean: Ek is the electron
energy with wave number k, nσ is the total number of
electrons with spin σ, EFσ — the Fermi energy with
spin σ (↑ or ↓), Jav — an average exchange interaction
between the electrons. The term coupling includes the
energy density of the interlayer exchange coupling and,
assuming only bilinear coupling, it can be given as

coupling = −J M1M2

|M1| |M2|
= J cos(α1 − α2), (11)

where M1 and M2 are the magnetization of the films
on both sides of the interlayer while α1 and α2 are the
angles of magnetization of adjacent magnetic films with
respect to chosen directions. Thus α1−α2 is the angle of
magnetization of the films on both sides of the separating
layer.

It was shown that the existence of the interlayer ex-
change coupling is not important for MR effect [18] and
thus it will be omitted in further considerations. The va-
lue of magnetization M is given by M = −µB (n↑ − n↓)
where µB is the Bohr magneton. The equilibrium magne-

tization for the considered system can determined from
minimization of the electronic free energy with respect
to magnetization ( ∂F∂M = 0). The conductivity is deter-
mined mainly by the electron at the Fermi level. In the
spin conserving process the s electrons with spin up and
spin down can be scattered to s-band and d-band. The
electrons from d-band are exchange split while DOS at
the Fermi level is different for spin up and spin down.

The DOS observed experimentally by means of pho-
toemission studies for transition metals exhibits a strong
dependence on the surface states [19]. The DOS calcula-
ted for Fe using relatively simple method calculations [20]
can be useful to predict the magnetic moments which are
in agreement with experimental data. Since the DOS for
the d-band is exchange split the density of state at the
Fermi level is different for spin up and spin down elec-
trons. For the calculations we use the following expressi-
ons for DOS:

Dσ = N (Ek ±∆) (W − Ek ∓∆)
/
W 3, (12)

where W is the width of the electron energy band while
∆ represents the shift of the energy level for two spin
orientations.

Dimensionality reduction on the basis of band theory
of magnetism shows that the effect of narrowing bands
leads to an increase in the density of states at the Fermi
level.

In the model presented in this paper, the density of
states at the Fermi level is inversely proportional to the
bandwidth.

Finally we obtain the following expression for MR va-
lue:

MR =
(ρ↑ − ρ↓)2

4
(
ρ↑ + ρNMdNM

dM

)(
ρ↓ + ρNMdNM

dM

) , (13)

because the resistivity of each channel according to the
Anderson model is proportional to the density of states
in the d-band at the Fermi level i.e. ρσ ∝ Nσ (EF). Ta-
king into account the last relation and the relations (3),
(4), (12) we obtain the expression ofMR in the following
form:

MR =
∆2
(
2EF

W − 1
)2((

EF

W −
∆
W

)
−
(
EF

W + ∆
W

)2
+ ρNM

(
dNMW 2

dMN

))
× 1(

EF

W + ∆
W

)
−
(
EF

W + ∆
W

)2
+ ρNM

(
dNMW 2

dMN

) . (14)
The results of calculations for MR are presented in

Fig. 1 as a function of the parameter ∆ which represents
the shift of the energy level for two spin orientations and
the parameter W which represents the width of the elec-
tron energy band.

The parameter ∆ represents the spin splitting and is
proportional to the mean value of the magnetization for
the considered system and the mean value of the ex-
change interaction between electrons.

In Fig. 2 we present the calculations of MR based
on Eq. (14) as function of reduced temperature t =
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Fig. 1. The MR value as a function of ∆ (the shift of
the energy level for two spin orientations) and W (the
width of the electron energy band) for dFM = 1.6 nm
and dNM = 1.2 nm.

Fig. 2. MR as a function of temperature. The experi-
mental data [21] for Fe/Cr multilayers (dFM = 1.6 nm
and dNM = 1.2 nm, W = 0.9 eV) are marked as dots.

T/TC. The obtained numerical results are in qualitative
agreement with experimental data [21–23].

3. Conclusions

Using the concept of the equation of state we calculated
the transport properties of multilayers. For thin layers
the magnetization exhibits the dependence on the num-
ber of monolayers in the FM layer. When the number
of FM layers increases, the magnetization tends towards
the bulk value for the 3D system [1]. The transport pro-
perties were examined by means of the equivalent net-
work of resistors for an Fe/Cr/Fe/Cr four layer cells and
the equation of state. The model allows to take into ac-
count the size effect in the calculations of MR.

The model calculations introduced in this paper can
be applied to current-in-plane geometry (CIP) as well as
to the current-perpendicular-to-plane (CPP) geometry.
The calculations are valid within the limitations of the
resistor network model [24, 25].

The main parameters in the introduced model are: the
width of the electron energy band, the shift of the energy
level for two spin orientations, the Fermi energy as well
as the size of the sample (the thickness of magnetic and
nonmagnetic layers and the total number of layers). The
numerical results show that the temperature behavior of
MR is in qualitative agreement with the experimental
results [21–23].
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