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Spin Wave Characteristics
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A ferromagnetic layered composite ABAB. . . ABA with nonuniform distribution of anisotropy parameter is
studied. The effects of damping leading to non-zero line-width of ferromagnetic resonance peaks are also taken
into account. As a result the dependence of spin wave parameter B and resonance line-width on parameters
characterizing system under consideration were obtained for the case of uniform anisotropy parameter and for
quadratic distribution of this parameter in magnetic layers, respectively.
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1. Introduction

Periodic composite magnetic materials have increased
interest in the areas of magnetism and spintronic devi-
ces, due to their potential application to data-processing
equipment [1–3]. Therefore it is important to know the
properties of spin waves to minimize their disturbing in-
fluence or make use of them in logic devices. Theoretical
and experimental approaches dedicated to periodic com-
posite magnetic materials showed that in description of
their properties it is necessary to take into account the
anisotropic factors. Recently, theoretical and experimen-
tal approaches dedicated to layered systems showed the
role of the anisotropic factors is very important for proper
description of their properties [4, 5]. The aim of presen-
ted paper is to calculate spin wave resonance spectrum
characteristics for multilayered system with spatial dis-
tribution of anisotropy across magnetic layers.

2. Method and calculations

We consider a ferromagnetic layered composite
ABAB. . . ABA, where A and B are different homogene-
ous ferromagnetic materials and each block A is made of
NA layers and each block B is made of NB layers. We
assume that an externally applied static magnetic field of
the strength in the range corresponding to the ferromag-
netic resonance condition is oriented perpendicularly to
the external surface of the system and all the spins can
be considered statically as parallel to the external field.
We focus our attention on the exchange modes that can
be separated from the magnetostatic ones by the proper
choice of radiofrequencies. The system under considera-
tions is constructed of p of AB blocks and is described by
the Heisenberg Hamiltonian consisting of the exchange,
anisotropy, and Zeeman terms, respectively.
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The anisotropy parameter connected with the atomic
plane ν is the sum of the uniaxial volume anisotropy
parameter D along the preferential axis and the aniso-
tropy Di at the surface between A and B sublayers and
the surface anisotropies at the surface belonging to the
block A (DS1) and B (DS2), respectively. We introduce
the additional term Dv′ depending on the position inside
the magnetic layer, which after [5] is assumed in the
quadratic form

Dν′ = D0

(
1− εν′2

N2
j

)
, (1)

where ε denotes the magnetic distortion parame-
ter defining the profile of magnetic anisotropy and
−Nj/2 ≤ ν′ ≤ Nj/2 and j = A,B, respectively. Then
a set of equations for coefficients bν(ki) describing
amplitudes of spin waves with wave vectors ki [6] can be
written in the following form:[

DS1 +Dv′

A1
− α (ki)

]
b1 (ki) + b2 (ki) = 0,

. . .

bv−1 (ki)−
[
Dν′

A1
− α (ki)

]
bv (ki) + bv+1 (ki) = 0,

. . .

bNA−1 (ki)−
[
Di +Dv′

A1
− α (ki)

]
bNA

(ki)

+
A12

A1
bNA+1 (ki) = 0,

A12

A2
bNA−1 (ki)−

[
Di +Dv′

A2
− α (ki)

]
bNA+1 (ki)

+bNA+2 (ki) = 0,

. . .
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bNA+v−1 (ki)−
[
Dν′

A1
− α (ki)

]
bN+v (ki)

+bNA+v+1 (ki) = 0,

. . .

bp(NA+NB)−1 (ki)

−
[
DS2 +Dv′

A2
− α (ki)

]
bp(NA+NB) (ki) = 0. (2)

In Eq. (2) A1 and A2 denote the exchange integrals for
sublayers A and B, respectively, while A12 stands for the
parameter of exchange interaction between spins belon-
ging to interface layers in different magnetic sublayers.
We use the transfer matrix method [7, 8] which allows
one to find wave vectors ki of elementary magnetic ex-
citations (i = 1 . . . p(N +M)) and introduce the matrix
Ŵ :

Ŵ =

p(N+M)∏
ν=1

T̂ν , (3)

with the following 2× 2 matrices defined as:

T̂ν =

(
2 + αν (ki) −Dν′

Aj
Dν′
Aj

0

)
, (4)

for ν belonging to the internal layers of A and B subsys-
tems. For the interface region the matrices are of the
following form [9]:

T̂NA
=

(
2 + αNA (ki) −A12+DNA

A1

1 0

)
,

T̂NA+1 =

(
2 + αNA+1 (ki) −A12+DNA+1

A2

1 0

)
,

T̂NB+1 =

(
2 + αNB+1 (ki) −A12+DNB+1

A1

1 0

)
. (5)

In order to find magnon wave vectors ki the energy de-
pendent terms αν(ki) from Eq. (2) have to be determi-
ned. The profiles of elementary magnetic excitations can
be calculated by solving the characteristic equation (3)
involving boundary conditions at external surfaces, na-
mely(

1
2α1+DS1−1
2−2α1−DS1

)
Ŵ

(
1

2αp(NA+NB)+DS2−1
2−2αp(NA+NB)−DS2

)
= 0. (6)

Magnetisation of the system and its temperature depen-
dence can be then obtained [10]. We have calculated the
spin wave parameter B describing decrease of spontane-
ous magnetisation M(T ) of the considered system with
temperature as a result of magnon excitation in low tem-
perature region given by the Bloch law as

M (T ) =M0

(
1−BT 3/2

)
. (7)

The parameter B has been calculated for the case of uni-
form (u.a.) and for the case of anisotropy distribution

given by Eq. (1) (a.d.) in dependence of the thickness of
the system and of the filling fraction defined as [11]:

f =
NA

NA +NB
. (8)

Results obtained in our calculation with DS1/A1 =
DS2/A2 =0,1 are presented in Figs. 1 and 2.

Fig. 1. The dependence of spin wave parameter B on
the thickness of block AB for two filling fractions f and
for uniform (u.a.) and position dependent (a.d.) aniso-
tropy parameter, respectively.

The spin wave parameter increases for non-uniform
distribution of anisotropy parameter in comparison to
results obtained for uniform one. Similar effect have
been reported when existence of various sources of im-
perfection e.g. roughness in surface and interface region
have been taken into account [9, 14].

Fig. 2. The dependence of spin wave parameter B on
the filling fraction f for two ratios of exchange integrals
and for uniform (u.a.) and position dependent (a.d.)
anisotropy parameter, respectively.

Formalism based on the Green function method pre-
sented above has been extended by introducing damping
effects due to magnon–magnon interaction [13]. The spin
wave characteristics can be then calculated employing the
relaxation equation [14] including the damping term de-
rived on the basis of results of Wesselinowa [15, 16]. As
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a result the distribution of resonance intensity in ferro-
magnetic resonance (FMR) has been obtained giving re-
sonance spectra with the shape depending on the filling
fraction and interaction parameters with non-zero line-
width of resonance lines. The results presented in this
paper show that introducing damping effect even on the
basis of phenomenological relaxation equation gives pos-
sibility of calculating of resonance spectra with non-zero
line-width. Figure 3 gives an example of dependence of
line-width of the line of highest intensity on filling para-
meter.

Fig. 3. The dependence of relative line-width of the
first resonance peak (normalized to resonance energy)
on the filling fraction for two ratios of exchange integrals
and for uniform (u.a.) and position dependent (a.d.)
anisotropy parameter, respectively.

Taking into account the anisotropy distribution given
by Eq. (1) leads to relative broadening of resonance peaks
in comparison to the systems with uniform anisotropy.
The difference between values obtained for both situa-
tions is not very significant, however characteristics for
(u.a.) and (a.d.) can be easily distinguished in Fig. 3.

The results obtained show that in the frames of the
model used in this work deviation of the anisotropy pa-
rameter from uniform distribution influences basic cha-
racteristics of spin wave resonance spectra. Very similar
curves to that presented in Figs. 1–3 can be obtained ta-
king into account exponential distribution of anisotropy
parameter proposed in [5].

4. Conclusions

It has been shown that taking into account dis-
tribution of anisotropy across the layer can help to
explain experimental results [5] obtained in spin wave
resonance. Calculations presented in this paper are an
attempt to investigate of spin waves in materials with

non-uniform anisotropy by modification of the Green
function method used to study of magnetic properties of
multilayers. The results obtained which are only of quali-
tative character show that introducing of anisotropy dis-
tribution across magnetic layers in magnetic composites
leads to change of the wave parameter B and the chan-
ges of resonance spectra. These changes are similar to
the behaviour caused by the existence of another source
of non-homogeneity, namely the existence of roughness
in the region of surface and interface.
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