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This paper is devoted to identification of the most important factors responsible for formation of magnetic
moments at edges of graphene-like nanoribbons. The main role is attributed to the Hubbard correlations (within
unrestricted Hartree-Fock approximation) and intrinsic spin—orbit interactions, but additionally a perpendicular
electric field is also taken into account. Of particular interest is the interplay of the in-plane edge magnetism and the
energy band gap. It is shown that, with the increasing electric field, typically the following phases develop: magnetic
insulator (with in-plane spins), nonmagnetic narrow-band semiconductor, and nonmagnetic band insulator.
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1. Introduction

Graphene-like nanostructures constitute a new promi-
sing class potentially important for future nanoelectro-
nics and spintronics. Unlike graphene, they usually have
sufficiently large intrinsic spin—orbit interaction which
strongly impacts their electronic and magnetic proper-
ties [1-3]. It is now known that zigzag-shaped edges of
graphene and graphene-like nanoribbons (GLNRs) may
have noticeable magnetic moments, and their ground
state configuration corresponds to the in-plane spin ar-
rangement rather than the out-of-plane one [4, 5]. The
aim of this study is to estimate the effect of both ISOI
and perpendicular external electric field on energy gaps
and edge magnetic moments of GLNR.

2. Methodology

The method is based on a tight-binding Hamiltonian
with additional terms describing: intrinsic spin—orbit in-
teraction (ISOI), the Hubbard correlations responsible
for either out-of-plane or in-plane magnetic ordering, and
perpendicular electric potential V. The potential is app-
lied between the sublattice atoms A and B which are not
coplanar but shifted with respect to each other typically
by ca. 0.5 A. The Hamiltonian reads

H = Z t,;J'C?;CjJ + itso Z Vij (C;CjT - CZCji)
(i,3),0 ((@.4))
+Hy +Vz,ui0¢t,0¢m (1)
where Hy takes the following form for the aforementio-
ned orderings:

Hpt = UZ((“u)”n + (nit)niy — (nir) (nig)),
Hp = —UZ(<5¢+>SZ +(S7)ST = (SIS ()

K3
The first sum in (1) runs over nearest neighbor sites, and
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the second one — over next nearest neighbors. ¢; ; is the
hopping integral, tso — ISOI parameter, U stands for
on-site electron repulsion, and

St = c:Crcu, S, = CZCW
o=m1. 3)
Moreover, v;; = 1 depending on whether the route from
the lattice site 7 to the next neighbor j via their common
nearest neighbor k is clockwise or counterclockwise, whe-
reas p; = £1 for A and B sublattice sites, respectively.
The angle brackets, in turn, mean the expectation value
over the Hamiltonian ground-state. Hereafter (n;,) will
be replaced by <n7,<7> - <ni0 + ni—<7>/2 = <ni<7 - ni—a>/2
in order to always keep the charge neutrality point at
E=0.
The Hubbard parts of the Hamiltonian can be schema-
tically presented as
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The magnetization is then equal to M; ouy = pB (it —n4y)
and M, i, = MB<S¢+ + 5;) in the out-of-plane and the
in-plane configuration, respectively. The problem is
exactly solved by a direct diagonalization of the full
Hamiltonian (cf. [5, 6]).

R
Nic = C;,Cio,

3. Results

Figure 1 shows a distribution of magnetic moments in
a small rectangular GLNR composed of W,. = 6 zigzag
lines (width),and L., = 8 blunt saw-teeth lines (length),
the last line is incomplete for symmetry reasons. The
sites are numbered column-wise, so the first maximum
(and last minimum) in Fig. 1 is due to the edges. It is cle-
arly seen that absolute values of the magnetic moments
in the in-plane configuration are usually slightly higher
than those corresponding to the out-of-plane configura-
tion. The difference would disappear in the isotropic case
of tso =0 [7].

Another effect of interest here is the impact of per-
pendicular electric field on edge magnetic moments and

(828)


http://doi.org/10.12693/APhysPolA.131.828
mailto:stefan@ifmpan.poznan.pl

In-Plane Edge Magnetism in Graphene-Like Nanoribbons 829

0.3+
A o,
02yl |[—M, = iﬁﬁiﬁhasgf:*‘
13 % s
& (g w— M ettt 2
0.1 f % out » .. v .\\:‘
’ _; % A A -
1 AN -
- ‘ N WA A= = i
§ %: ’j \ f }x';v {ﬁv J\tf{;f ’gr’,':uf .2(
Y |
b
{
b §
§ 4
1%
-0.3 T T T T T T T T 1
0 10 20 30 40 i 50 60 70 80 90
Fig. 1. Local magnetic moments in an exemplary na-

noribbon containing 90 lattice sites. The solid (dashed)
curve corresponds to the stable in-plane (unstable out-
of-plane) configuration. The parameters are: U/t = 1,
tso/t =0.025, V = 0.

energy levels of the GLNR. Perpendicular electric field ef-
fects have been studied, both in graphene bilayers [8, 9]
as well as in graphene-like buckled systems [10-12] but,
to our best knowledge, not for the GLNRs with in-plane
edge magnetic moments.

Figure 2 shows that perpendicular staggered voltage V'
suppresses edge magnetic moments quite strongly. In the
in-plane configuration (solid line) the maximum magnetic
moment M.y drops rapidly for eV/t exceeding 0.07.
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Fig. 2. Impact of the perpendicular voltage on the in-
plane edge magnetism of the GLNR L., = 50 long and
Wae = 20 wide. For comparison, a plot corresponding

to the unstable out-of-plane configuration is also shown
(dashed curve).

It is also interesting to have a closer look at an energy
gap in the case of the stable in-plane configuration. As
shown in Fig. 3, it is obvious that the gap is never comple-
tely closed by V. Moreover, a clear correlation between
the edge magnetism and the energy gap is readily seen by
comparing Fig. 2 and Fig. 3. In particular, the system be-
haves as: (1) magnetic insulator for small V', then (ii) nar-
row band-non-magnetic semiconductor, and finally (iii)
non-magnetic band insulator for high voltages.
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Fig. 3. Energy gap against the perpendicular voltage

for the GLNR in the ground state (in-plane magnetic
configuration). The parameters are as in Fig. 2.

4. Conclusions

Summarizing, it has been shown that graphene-like
nanoribbons may reveal quite significant edge magnetic
moments, and the energetically favorable arrangement of
edge magnetic moments is the in-plane one. The im-
pact of the perpendicular voltage on both energy gaps
and the edge magnetism is quite strong. With increasing
voltage the nanoribbon changes its electric properties,
from magnetic insulator through non-magnetic narrow-
band semiconductor to non-magnetic band insulator. So
in the non-magnetic region the observed behavior resem-
bles that of graphene.
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