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Magnetization Curves of Geometrically Frustrated
Exchange-Biased FM/AFM Bilayers
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We consider a ferromagnetic/antiferromagnetic bilayer on a triangular lattice in the framework of the classical
XY model. The impact of the geometrical frustration in this system on the magnetization curves and the exchange
bias phenomenon is studied. The magnetization curves and the phase diagram for such systems are obtained. We
observe horizontal plateaus and a split of the hysteresis loop on the magnetization curves. It is shown that the
shift of the hysteresis loop (exchange bias) occurs for the systems with a magnetically hard antiferromagnet.
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1. Introduction

In this paper we study the exchange bias pheno-
menon in the ferromagnetic/antiferromagnetic bilayer
(FM/AFM) with the geometrical frustration. The ex-
change bias phenomenon consists in the shift of the mag-
netic hysteresis loop M(H) along the external magnetic
field axis H [1]. Moreover, some experimental studies
show the asymmetry of a magnetization curve, the ap-
pearance of horizontal plateaus, and the split of hystere-
sis loops. These effects are widely studied theoretically
and experimentally in layered FM/AFM systems but still
have no comprehensive explanation. Despite a large num-
ber of works, the influence of the geometrical frustration
in the bilayer system on the exchange bias has been little
studied yet [2, 3]. The geometrical frustration appears
when the minimum of the system energy does not corre-
spond to the minimum of all local interactions. The tri-
angular lattice with the AFM interaction between each
pair of spins is a simplest example of the geometrically
frustrated system. In this system the frustration appears
because of incompatibility between the local interactions
and the lattice geometry.

In this paper the FM/AFM bilayers on the triangular
lattice are studied in the framework of the classical XY
model with periodic boundary conditions. The outline of
the paper is as follows. In Sect. 2 we introduce a layered
system made of one FM and one AFM monolayers on
a triangular lattice. Section 3 is devoted to the study
of the FM/AFM structure with fixed (so-called frozen)
AFM magnetic moments. The paper is completed by the
concluding remarks.

2. FM/AFM bilayer on triangular lattice

In this section we consider a FM/AFM bilayer made of
two monolayers on the triangular lattice. The interaction
through the FM/AFM interface J1 > 0 is considered to
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be ferromagnetic. The exchange interactions in the FM
and AFM films are given by the parameters J > 0 and
J0 < 0, respectively. We assume a strong easy-plane ani-
sotropy both in the AFM (layer A) and FM (layer B) lay-
ers and an additional single-ion anisotropy βi, i = A,B
in the easy planes of the FM and AFM subsystems. We
consider different values of the magnetic anisotropy βi for
the AFM and FM planes βA 6= βB . It is assumed that
the external magnetic field H is directed along the easy
axis and can be H > 0 or H < 0. The magnetic states
of the magnetization vectors in this bilayer are given by
the rotational angles ϕi of spins in the easy plane. The
magnetic energy of the system is given by

E = −J0
∑
i,j∈A

cos(ϕi − ϕj)− J
∑
i,j∈B

cos(ϕi − ϕj)

−J1
∑

i∈A,j∈B

cos(ϕi − ϕj)−H
∑

i∈A,B

cos(ϕi)

−βB
2

∑
i∈B

cos2(ϕi)−
βA
2

∑
i∈A

cos2(ϕi), (1)

where the first three summations run over all nearest
neighbours and the next three over the spins in the re-
spective layers. Assuming spin uniformity in the re-
spective sublattices the possible equilibrium states are
given by the equations

∂E/∂ϕk,l = 0, (k = 1 . . . 3, l = A,B). (2)
where indexes l and k correspond to the planes (FM or
AFM) and to the sublattices in these planes, respecti-
vely. The solutions of these equations are the paral-
lel structures (ϕk,l = 0, π), the non-collinear structures
(ϕk,l 6= 0, π), and the antiparallel structures which cor-
respond to the horizontal plateaus (ϕ2,A = 0, ϕ2,B =
π, ϕk,l = π), where k = 1, 3, l = A,B, so all magnetic
moments are lying along the field except one in the layer
A that has an opposite direction. The second type of
horizontal plateaus corresponds to a ϕ2,l = 0, ϕk,l = π,
where k = 1, 3, l = A,B.

The transition from the collinear phase to the can-
ted phase corresponds to the bifurcation of the soluti-
ons ϕk,l = 0, π. In the neighbourhood of the bifurcation
point, there are canted solutions of Eq. (2) which are in-
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finitesimally close to the collinear states. To find this
point, we linearise these equations with respect to the
angles ϕk,l and look for the nonzero solutions of the li-
nearised equations. The analysis of the stability of the
ϕk,l = π phase can be done in a similar way.

Fig. 1. Phase diagram of the FM/AFM bilayer on
the triangular lattice for the values of the parameters
J0/J = −2, βA/J = 1, βB/J = 0.5. The dashed lines
correspond to the magnetization curves in Fig. 2a–c.

Fig. 2. The hysteresis loops of the FM/AFM bilayer
for different values of J1 (a)–(c) and βA (a,d).

The areas of the existence of the identified structu-
res are given in Fig. 1. The arrows show the direction
of magnetization. The parameter regions A1 and A2 in
Fig. 1 correspond to the parallel states in the FM/AFM
bilayer, A3 and A4 to the non-collinear structures, and
A5 to the existence of the antiparallel states. The small
area A7 corresponds to the coexistence of horizontal pla-
teaus (see hysteresis loop in Fig. 2a,b,d). The area A6

is the domain of the existence of the hysteresis loop in
the magnetization curves. The reversible phase bounda-
ries are plotted as solid lines, while the irreversible phase
boundaries leading to a magnetic hysteresis are plotted
by dotted lines. In the areas A1, A2 the external magne-
tic field is big enough to reverse both FM and AFM and
the magnetization vectors in both layers have the same
direction. On the contrary, the direction of magnetic mo-
ments of the layer A and layer B in the other areas can
be different as for example in the horizontal plateau, des-
cribed above. The lines for the boundaries of the parallel
and antiparallel states were obtained analytically from
Eq. (2), while the other curves could only be obtained
numerically.

The total magnetization of FM/AFM bilayer is given
by the formula:

M =
∑

i∈A,B

cosϕi.

The hysteresis loops were obtained for different values of
J1 (Fig. 2a–c) and βA (Fig. 2a,d). The split of the hys-
teresis loop into three loops is observed for some values
of the system parameters (Fig. 2d).

3. The case of frozen AFM
In this section the AFM layer in the FM/AFM bilayer

is considered to be magnetically hard, i.e., for the mag-
netic fields that are less than the spin-flop transition, its
magnetic structure is fixed during the entire magnetiza-
tion reversal [4]. One can obtain the frozen AFM layer
as a surface of a staked AFM with large anisotropy. In
this AFM stack the structure of each layer is ferrimag-
netic (↑↓↑), with magnetic moments in each layer having
opposite direction with their nearest neighbours in the
neighbouring layers and thus the total magnetization of
the AFM stack is zero. We consider a case of an uncom-
pensated FM/AFM interface. In particular, the collinear
structure is considered with two magnetic moments in the
triangular plaquette lying opposite to the external mag-
netic field and one magnetic moment is lying along the
field. The uncompensated AFM interface can appear in
the following way. Because of the frustration, a noncol-
linear structure with zero magnetization appears in the
AFM layer in zero magnetic field. Due to the interaction
with the FM layer the spins in the AFM layer deviate
from their original positions and thus form an uncom-
pensated AFM interface [2].

The areas of existence of the parallel A1, A2, non-
collinear A3, and antiparallel A5 phases (Fig. 3) and the
hysteresis loops (Fig. 4) were obtained in a way similar
to that from the previous section. The reversible and
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Fig. 3. Phase diagram of the FM/AFM bilayer on the
triangular lattice. The case of a fixed AFM for βB/J =
0.2. The dashed lines correspond to the magnetization
curves in Fig. 4.

Fig. 4. The hysteresis loops of the FM/AFM bilayer
for different values of J1. The inset shows a small hys-
teresis at H/J ≈ −2.5.

irreversible phase are denoted by the solid and dotted
lines, correspondingly. The line which characterise the
left boundary of the hysteresis loop (Fig. 4b,c) is almost
indistinguishable in Fig. 3 and shown in the inset. It
is shown that in this model the shifted magnetization
curve can be asymmetric (Fig. 4b,c) and has horizon-
tal plateaus (Fig. 3c). In this section the M(H) cur-
ves correspond to the FM layer, while the magnetic mo-
ments of AFM are fixed and do not contribute to the
magnetization.

4. Conclusions

In the framework of the classical XY model the mag-
netization curves of the FM/AFM bilayer on a triangular
lattice are studied. We have considered the cases of the
non-frozen and frozen AFM. The hysteresis loops have
been obtained for different values of the exchange inte-
raction and the magnetic anisotropy. The exchange bias
is observed in the case of the frozen AFM. Horizontal
plateaus and the hysteresis loops are observed for both
frozen and non-frozen AFM cases. Phase diagrams have
been calculated for selected values of the parameters.
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