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We study effects of the next-next-nearest-neighbour antiferromagnetic (J3 < 0) interaction on critical proper-
ties (or phase diagram) of the frustrated spin- 1

2
J1 − J2 − J3 Ising antiferromagnet on the honeycomb lattice by

using the effective-field theory with correlations. Beside the ground-state energy, we find that there is a region
of J3 < 0 in which the frustrated honeycomb lattice antiferromagnet exhibits a tricritical point, at which the
phase transition changes from the second order to the first one on the line between Néel antiferromagnetic and
paramagnetic phases.
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1. Introduction
Since a honeycomb lattice antiferromagnet with only

nearest-neighbour (nn) interactions (J1 < 0) is conside-
red as a bipartite lattice, the ground state exhibits long-
range ordering. However, the system is rather fragile
against the onset of frustrating interactions. In recent
years, therefore, it has become of great interest to inves-
tigate the corresponding model where the nn bonds are
augmented by frustrating next-nearest-neighbour (nnn)
bonds with the strength J2 < 0, possibly also in con-
junction with next-next-nearest-neighbour (nnnn) bonds
of the strength J3 < 0. An interest in the honeycomb lat-
tice is also promoted from the recent experimental acti-
vity [1] and from graphen-related issues [2]. Due to these
reasons, recently there has been a huge theoretical inte-
rest in frustrated spin models on the honeycomb lattice,
in which frustration is incorporated by nnn interactions
and maybe also nnnn interactions [3]. In this paper we
utilize the effective-field theory with correlations (EFT)
as in our earlier work for the simpler J1 − J2 model [4].
Therefore, it will be interesting to study effects of frustra-
tion on the phase diagram of this bipartite lattice without
making the restriction J3 = 0.

2. Formulation
We consider the frustrated honeycomb Ising antiferro-

magnet (AF) with nn (J1 < 0), nnn (J2 < 0), and nnnn
(J3 < 0) interactions. Then the Hamiltonian for the re-
sulting spin- 12 J1 − J2 − J3 Ising AF on the honeycomb
lattice is given by

H = −J1
∑
〈i,j〉

sisj − J2
∑
〈i,i2〉

sisi2 − J3
∑
〈i,i3〉

sisi3 , (1)

where index i runs over all honeycomb lattice sites, and
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indices j, i2, and i3 run over all nn, nnn, and nnnn sites
to i, respectively, counting each bond once and once only,
and si = ±1. The lattice and interactions are illustrated
in Fig. 1.
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Fig. 1. The J1 − J2 − J3 Ising model on the honey-
comb lattice, showing in (a) the Néel state, where two
sublattices are marked by black and white circles. The
anti-Néel states are shown in (b) and (c) (see text).

We discuss first the ground state of this model. The
AF phases consist of the Néel phase (N) (Fig. 1a) and
two anti-Néel phases (aN) described either by alternate
single ferromagnetic columns of antiparallel spins or al-
ternate pairs of columns consisting of AF coupled spins
shown in Fig. 1b and Fig. 1c (see also Fig. 17 of [5]). The
ground-state energy per site for the AF Néel phase is

EN
N

= −3

2
(|J1|+ 2J2 − J3). (2)

In this case each site has its three nn bonds on the other
sublattice, six nnn on its own sublattice, and three nnnn
on the other sublattice. Thus only the nnn interactions
act to frustrate the antiferromagnetism. On the other
hand, the aN ground state for J3 = 0 is twofold degene-
rate and two states, labeled (b) and (c) in Fig. 1, have
exactly the same ground-state energy. However, adding
the nnnn AF interactions (or J3 < 0), only the (c) state
has lower energy given by

EaN
N

= −1

2
(|J1| − 2J2 + J3). (3)

Now, pairwise equating the ground-state energies of the
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different AF phases, one can find that the first-order tran-
sition between the N and aN phases is determined by

R = −1

4
+

J3
n|J1|

, (4)

where R = J2/|J1| is the frustration parameter and
n = 2. On the other hand, we have found by using
Monte Carlo simulations that the ground state of the aN
phase is degenerate and has the energy

EaN
N

= −1

2
(|J1| − 2J2 − J3). (5)

Therefore, the ground-state energy per site in this case
is less than that given by relation (3). Comparing this
ground-state energy of the aN phase with (2), we obtain
that the N and aN phases have the same energy only on
the line given by Eq. (4) with n = 4.

Let us consider the EFT (for a review see, e.g., Ref. [6])
based on a single-site cluster containing only one spin on
a site i and a sublattice A which interacts with other nn,
nnn, and nnnn spins from the neighbourhood. In this
approach, applying the differential operator technique,
and using the van der Waerden identity for the two-state
Ising spin system, one finds for the AF cluster on the
honeycomb lattice the exact relation

〈sAi 〉 =
〈 3∏
i1=1

(A1 +B1s
B
i1)

6∏
i2=1

(A2 +B2s
A
i2)

×
3∏

i3=1

(A3 +B3s
B
i3)
〉
tanh(βx)

∣∣∣
x=0

, (6)

where 〈· · · 〉 denotes a thermal average, sAi2 and sBi1 , s
B
i3

are spin variables on sublattices A and B, respectively,
Aν = cosh(JνDx), Bν = sinh(JνDx) (ν = 1, 2, 3),
Dx = ∂/∂x is the differential operator, and β = 1/kBT .
Now, assuming the statistical independence of lattice si-
tes, Eq. (6) reduces to

mA = (A1 +B1mB)
3(A2 +B2mA)

6

×(A3 +B3mB)
3 tanh(βx)

∣∣∣
x=0

, (7)

where mα = 〈sαg 〉 (α = A,B) are the sublattice mag-
netizations per site. It should be noted here that this
approximation is quite superior to the standard mean-
field theory since even though it neglects correlations be-
tween different spins but takes the single-site kinematic
relations exactly into account through the van der Waer-
den identity. On the other hand, the standard mean-field
theory neglects all correlations.

At this place, in order to solve the problem generally,
we need to evaluate the sublattice magnetization mB . It
can be derived in the same way as mA by the use of the
selected spin sj on the B sublattice. However, at zero
magnetic field we have mS ≡ mA = −mB and the equa-
tion for mB is the same as Eq. (7). Therefore, in what
follows we use only Eq. (7), which in this case takes the
final form

mS =

5∑
n=0

K2n+1m
2n+1
S . (8)

The coefficients K2n+1, which depend on T,R, and
J3, can be easily calculated within the symbo-
lic programming by using the mathematical relation
exp(λDx)f(x) = f(x+ λ).

In order to determine the phase diagram of the AF
J1 − J2 − J3 model, we should solve Eq. (8) for a given
value of the frustration parameter R and the interaction
J3, and look for the temperature at which the magne-
tization (order parameter) mS goes to zero. However,
for some values of R and J3, the order parameter goes
to zero discontinuously, i.e., the transition becomes first
order. To analyze first-order transitions, one needs to
calculate the free energy for the N and paramagnetic (P)
phases and to find a point of intersection. Because the
expression for the free energy in this effective-field theory
does not exist, it will be extrapolated with the help of the
relation for the equilibrium value of the order parameter
(8) as follows [7]:

F (T,R, J3,m) = F0(T,R, J3)

+ 1
2

(
1−

5∑
n=0

K2n+1

n+ 1
m2n

)
m2, (9)

where F0(T,R, J3) is the free energy of the disorde-
red (paramagnetic) phase and m is the order parameter
which takes the valuemS at thermodynamic equilibrium.
We note that relation (9) corresponds to a Landau free
energy expansion in the order parameter truncated at
the m12 term. Then a critical temperature and a tricri-
tical point, at which the phase transition changes from
second order to first order, are determined by the follo-
wing conditions [7]: (i) the second-order transition line
when 1−K1 = 0 andK3 < 0, and (ii) the tricritical point
(TCP) when 1−K1 = 0, K3 = 0, ifK5 < 0. However, the
first-order phase transition line is evaluated by solving si-
multaneously two transcendental equations, namely the
equilibrium condition [∂F (T,R, J3,m)/∂m]m=mS

= 0
and the equation F (T,R, J3,m) = F0(T,R, J3) that cor-
responds to the point of intersection of the free energies
for the N and P phases.

3. Results and discussion

Now, by using the general formulation given in the
previous section, let us examine the phase diagram of
the system.

In Fig. 2, the critical temperature kBTN/|J1| versus R
is shown for selected values of J3/|J1|. The solid lines in-
dicate the second-order phase transitions, while the das-
hed lines represent the first-order phase transitions. The
black circles denote the position of TCPs at which the
phase transitions change from second to first order. The
most important feature in Fig. 2 is that the J1 − J2 mo-
del on the honeycomb lattice exhibits only the second-
order phase transition which vanishes at R = −1/4, in
agreement with the ground state discussed above. Howe-
ver, if the J3 interaction is different from zero and gradu-
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Fig. 2. Phase diagram in the R − T plane for the
J1 − J2 − J3 model, when the interaction J3/|J1| is
changed. Solid and dashed lines indicate second- and
first-order transitions, respectively, while the black cir-
cles denote the position of a TCP. N and P are the Néel
and paramagnetic phases, respectively.

ally decreases from zero to a larger negative value, the tri-
critical point appears in the system for J3/|J1| = −0.2396
(see, e.g. the curve labeled by –0.24). It is also note-
worthy that all transition temperatures TN between the
N and P phases as function of the frustration parameter
R approach zero at the values of R determined by Eq. (4)
with n = 4. This indicates that the ground-state energy
of the aN phase for the J1 − J2 − J3 Ising model on the
honeycomb lattice is indeed given by Eq. (5).
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Fig. 3. Temperature dependence of the order para-
meter of mS for the J1 − J2 − J3 Ising model with
J3/|J1| = −0.3, when the frustration parameter R is
changed. The dashed lines indicate the first-order tran-
sitions.

In order to confirm the prediction of the first- and
second-order phase transitions, let us examine tempe-
rature dependences of the order parameter mS for the
system with J3/|J1| = −0.3, when the value of R is chan-
ged. As can be seen in Fig. 3, the order parameter mS

falls smoothly to zero when temperature increases from
zero to kBTN/|J1|, characterizing a second-order phase
transition. Similarly, mS also reduces to zero continu-
ously at the TCP (see curve labeled –0.2194). On the
other hand, below the TCP, the stable solution of mS

becomes discontinuous at the first-order phase transition
and this discontinuity increases with R going to −0.3250.
The curves for R = −0.25 and R = −0.3 are examples of
such behavior, where the first-order transition is indica-
ted by a vertical dashed line.

4. Conclusions

We have studied the phase diagram in the (R, T ) plane
of the frustrated J1−J2−J3 Ising model with spin- 12 on a
honeycomb lattice using the EFT based on the single-spin
cluster. We have determined that in the ground-state two
ordered phases, namely the N and aN states coexist only
on the line given by Eq. (4) with n = 4. However, for
the aN phase we have not found a long-range order at
T 6= 0 K due to the degeneracy of the ground state. This
behaviour has been also confirmed by our preliminary
Monte Carlo calculations. On the other hand, the present
EFT predicts the TCP in the phase diagram between the
N and P phases due to the J3 interaction. Of course,
this is the effective-field result, therefore, further Monte
Carlo simulations or more reliable calculations for this
frustrated J1 − J2 − J3 Ising model would be desirable.
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