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New equations, which have analytical solutions, for lattice and electronic heat capacities, entropies and enthal-
pies at constant volume and constant pressure were derived by using kinetic theory, Kirchhoff and Stefan-Boltzmann
laws and Wien radiation density equation. These equations were applied to the experimental constant volume heat
capacity data of copper. The temperature ΘV corresponding to 3R/2 was found to be 78.4 K for copper. Copper
shows the dimensionality crossover from 3 to 2 at about 80 K. The ΘV (T ) is proportional to Debye temperature.
The relationship between dimension and ΘV was given. Temperature dependence of Debye temperature and non-
monotonic behavior were discussed. The heat capacity and entropy values, predicted by the proposed models were
compared with the values predicted by the Debye models. The results have shown that the proposed models fit the
data better than the Debye models. Enthalpy equations derived in this study were compared with the polynomial
model and a good fitting was obtained. The equation for the photon absorption equilibrium constant of copper
was derived.
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1. Introduction

Heat capacity is the fundamental quantity for calcula-
ting thermodynamic functions like enthalpies, entropies
and Gibbs free energies of solids. Different analytical mo-
dels have been proposed in the past for analytical descrip-
tion of heat capacities. Einstein’s single oscillator model
is the first quantum statistical model for the temperature
dependences of heat capacities of solids [1]. This mo-
del could not satisfactorily describe the experimentally
obtained temperature dependences of heat capacities at
low temperatures [2–4].

Nernst and Lindemann’s two-oscillator model in com-
parison with Einstein’s model have made the impro-
vements of fitting of heat capacity data over large tempe-
rature regions. In this model, the ratio for the respective
oscillation frequencies was taken to be 1/2. However, this
model could not well describe the heat capacities in the
cryogenic region T < 100 K [5].

Einstein and Nernst-Lindemann models have used the
discrete oscillation frequencies, and the resulting theore-
tical curves, obtained by these models, show a plateau
behavior in the T →0 K limit. In Debye model, atomic
system is considered to be a three dimensional, elastic,
isotropic continuum, and the single Einstein frequency is
replaced by a frequency distribution function aω2 [6]. De-
bye frequency function is a parabola open upward over
the range from 0 to the Debye limiting frequency ωD.
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The temperature corresponding to the Debye frequency
ωD is called the Debye temperature ΘD. The heat capa-
city is given by [2–4, 6, 7]:

CV = 9R

(
T

ΘD(T )

)3
xD∫
0

x4 ex

(ex − 1)
2 dx, (1)

where x = ΘD(T )/T and R is the gas constant. The
Debye temperature ΘD(T ) is given by [7]:

ΘD(T ) =
h

kB

(
3NA

4πVm

)1/3

v, (2)

where h is the Planck constant, kB is the Boltzmann
constant, NA is the Avogadro number, Vm is the molar
volume of atom and v is the speed of sound. In the De-
bye model, heat propagates in the solid as sound waves.
These waves are treated as energy particles called pho-
nons, traveling at speeds, having two transverse and one
longitudinal velocities [4]. v is given by [3]:

3

v3
=

1

v3l
+

2

v3t
, (3)

where vl and vt are the velocities of longitudinal and
transverse acoustic waves in solid.

The entropy equation in the Debye model is given by
[2, 3, 6]:

S = 3R

 4

x3D

xD∫
0

x3dx

(ex − 1)
− ln

(
1− e−xD

) . (4)

The analytical solutions of integrals in Eqs. 1 and 4 are
not known. Therefore, at the intermediate temperatu-
res, the values of heat capacities and entropies must be
obtained by numerical integration.
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At very low temperatures, where T � ΘD, the follo-
wing equation is obtained from Eq. (1):

CV ∼=
12π4R

5

(
T

ΘD (T )

)3

. (5)

Equation (5) is known as the Debye T 3-law and assumed
to be valid from 0 K up to lattice temperatures of or-
der of ΘD(0)/50, where ΘD(0) is the Debye temperature
at T → 0 K. Generally, as the temperature is increased
from 0 K, ΘD(0) value remains practically constant up
to about T ≈ ΘD(0)/50. It then decreases, and after
passing through a minimum at T ≈ ΘD(0)/10 starts to
increase to a constant plateau at about T ≈ ΘD(0)/2,
[2, 3, 8]. Therefore, it is often impossible to provide good
fitting of Eq. (1) to the given heat capacity data set with
a single Debye temperature over the entire temperature
range [3, 8]. These non-Debye behaviors have been given
in terms of CV /T 3 functions [9–11]. These curves show
a non-monotonic behavior in the low temperature region
which cannot be explained with the Debye’s model.

The departure from T 3-law in the temperature interval
θD(0)/50 ≤ T ≤ θD(0)/10 was assumed to be due to
the deviation of density of modes of a real solid from
the assumed ω2-distribution. At these temperatures,
the following equation has been given by a Taylor series
expansion of the form [3, 8, 12]:

Cv ∼=
12π4R

5Θ3
D(0)

T 3 + c5T
5 + c7T

7 + . . . , (6)

where the terms T 5, T 7,. . . , are assumed to be respon-
sible for the non-Debye behavior in the cryogenic region
and the coefficients c3, c5, c7, . . . , cannot be related to
the limiting Debye temperature. At high temperatures,
the following equation is obtained from Eq. (1) [2, 3, 5]:

CV ∼= 3R

[
1− 1

20

(
ΘD (∞)

T

)2

+ . . .

]
, (7),

where ΘD(∞) is the Debye temperature at T →∞ K.
Different models based on Thirring and exponential se-

ries expansions have also been given for the intermediate
to high temperature regions, respectively [5]. However,
these models are complex and sets of seven or eight em-
pirical parameters should be determined.

The heat capacity of a free electron gas in three di-
mensions for T � TF has been given by [7]:

Cel = 3R
π2

6

T

TF
, (8)

where TF is the Fermi temperature. For high tempera-
tures, the following equation has been given in [3]:

Cel =
3

2
Rz

[
1− 1

6 (2π)
3/2

(
TF

T

)3/2

. . .

]
, (9)

where z is the number of free electrons per atom. For
intermediate values of (T/TF), Cel must be computed
numerically.

The analytical solutions of heat capacity and entropy
equations given by Debye are not known. Therefore,
at the intermediate temperatures, the values of heat

capacities and entropies must be obtained by numeri-
cal integration. Lattice heat capacity at constant pres-
sure, lattice molar enthalpy, electronic molar enthalpy
and entropy equations have not been given in the past.
The temperature dependence of Debye temperature and
deviation from monotonicity have not been explained.
In order to solve these problems, new kinetic theory for
radiation and new equations will be proposed. These
equations will be applied to the heat capacity data of
copper and the results will be compared with the results
obtained by Debye equations.

2. Theoretical

2.1. Heat capacity equations

Kirchhoff had proposed that, at equilibrium, any two
different areas on the interior wall of a thermostated
chamber of any geometry must emit and absorb radia-
tion at equal rates to maintain equilibrium. If the emis-
sivity of radiant energy, emitted from an element into
the chamber is e and the fraction of radiant energy ab-
sorbed from incident radiation of intensity I (λ, T ) is a,
the energy absorbed is aI(λ, T ). The energy absorbed
must be equal to the energy emitted e for the condition
of thermal equilibrium to be satisfied [4]:

aI (λ, T ) = e. (10)
The intensity is a function of only λ and T for cavity
radiation, because e and a are functions of λ and T :

a (λ, T ) I(λT ) = e(λT ). (11)
This is the Kirchhoff’s law. The intensity of radiation is
related to the energy density:

I (λ, T ) =
c

4π
u(λT ), (12)

where u(λT ) is the energy density and c is the speed of
electromagnetic radiation in vacuum. Because of the re-
ciprocal relationship between wavelength and frequency
of electromagnetic radiation, the notations I(λT ), I(νT )
and u (λ, T ) , u(νT ) are equivalent.

Stefan-Boltzmann radiation law had shown that the ra-
diation density u (T ) for three degrees of freedom, three
dimensions, within a blackbody cavity is given as fol-
lows [4]:

u (T ) = 3p =
8π5k4B
15h3c3

T 4 = βT 4, (13)

where p is the radiation (photon) pressure. From
Eq. (12), the following equation can be written:

I (T ) =
c

4π
u(T ), (14)

where I (T ) =
∫∞
0
I (λ, T ) dλ and u (T ) =

∫∞
0
u (λ, T ) dλ.

Substituting Eq. (13) into Eq. (14) gives:

I (T ) =
3c

4π
p (15)

From Eq. (11), the following equation can be written:
a (T ) I (T ) = e(T ), (16)

where a (T ) =
∫∞
0
a (λ, T ) dλ and e (T ) =

∫∞
0
e (λ, T ) dλ.

Substitution of Eq. (15) into Eq. (16) gives:
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a(T )
3c

4π
p = e(T ). (17)

Equation (17) shows that the energy absorbed per unit
area in unit time depends on the photon pressure p
and a(T ).

The total phonon energy of a solid, given by Debye for
three dimensions at temperature T is [4, 7]:

U (T ) =
9NkBT

4

Θ3
D(T )

∫ xD

0

x3

ex − 1
dx. (18)

At low temperatures, Eq. (18) becomes:

U (T ) =
3π4NkB

5Θ3
D(T )

T 4, (19)

where N is the number of atoms in the solid. The T 4

variation of the phonon energy, given by Eq. (19) is the
acoustic equivalent of the Stefan-Boltzmann law [2, 3].
The acoustic equivalent of the Stefan-Boltzmann law in
units of Joule per mole can be written from Eq. (13) as:

U (T ) =
4π5k4BVm

5h3v3
T 4 =

3Vmc
3

2v3
3p. (20)

The factor 3/2 accounts for the fact that phonons travel-
ling at speed have two transverse and one longitudinal
amplitude. From Eq. (19) and Eq. (20), the following
equation can be written:

U (T ) =
3π4NAkB

5Θ3
D(T )

T 4=
4π5k4BVm

5h3v3
T 4=

3Vmc
3

2v3
3p. (21)

Equation (2) can be obtained from Eq. (21). Equa-
tion (21) shows that the phonon energy (energy ab-
sorbed) depends on the photon pressure, as given
in Eq. (17).

A calorimeter containing any solid at thermal equili-
brium at any temperature above 0 K contains energy
particles (photons). After thermal equilibrium has been
established within a calorimeter at some temperature
(T > 0 K), constant temperature within the calorime-
ter shows that the solid must be absorbing and emitting
photons at the same rate. The equilibrium number of
photons within the calorimeter is determined only by the
temperature. The photons can be created or destroyed
by changing the temperature of the calorimeter [4].

In the system of solid and photons, in a calorimeter, at
any temperature (T > 0 K), the photons will be striking
the solid and a fraction of photons will be absorbed. Af-
ter thermal equilibrium has been established within the
calorimeter at some temperature (T > 0 K), the rate at
which photons strike the solid will be exactly balanced
by the rate at which photons leave the solid.

The rate of absorption ra will be equal to the rate
of collisions rc of photons with the solid, multiplied
by a factor δ representing the fraction of the colliding
photons that are absorbed. At a constant temperature
(T > 0 K), the number of collisions will be proportional
to the photon pressure p and the fraction δ will be con-
stant. The rate of absorption will be rcδ. This is equal to
kap, where ka is a constant involving the fraction δ and
the proportionality between rc and p.

Since the absorption is limited to the total number of
electrons and atoms (particles) Nt in the solid, these par-
ticles may be divided into two groups. N is the number
of photon absorbed particles and (Nt −N) is the number
of photon unabsorbed particles. Since only those, pho-
tons, which are striking the unabsorbed particles, can be
absorbed, the rate of absorption will be proportional to
(Nt −N):

ra = kap (Nt −N) . (22)
The rate of emission will be proportional to the number
of photon absorbed particles:

re = keN. (23)
At thermal equilibrium at any temperature (T > 0 K),
the rate of absorption will be equal to the rate of
emission:

kap(Nt −N) = keN. (24)
Equation (24) is comparable with Eq. (17). Stefan-
Boltzmann law is given as [4]:

p =
T

4

dp

dT
. (25)

Substituting Eq. (25) into Eq. (24) gives:

ka(Nt −N)
dp

dT
=

4

T
keN. (26)

If the temperature dependences of Vm and v are
neglected, the following equations are obtained from
Eq. (21):(

∂U(T )

∂T

)
V

= CV =
9Vmc

3

2v3
dp

dT
, (27)(

∂U(T )

∂T

)
V

=
12π4NAkBT

3

5Θ3
D(T )

=
16π5k4BVmT

3

5h3v3
. (28)

Substituting Eq. (27) and Eq. (28) into Eq. (26) gives:
N

Nt
=

CV
CV + C

′
V

=
T 3

T 3 + Θ3
V (T )

, (29)

C
′

V =
18c3Vm
v3KT

, (30)

Θ3
V (T ) =

15c3VmΘ3
D(T )

2π4NAkBv3KT
=

45h3c3

8π5k4BKT
, (31)

where K = ka/ke is the photon absorption equilibrium
constant. From Eq. (29), when T →∞,

CV + C
′

V = 3R, (32)
From Eqs. (29) and (32), the following equation can be
written for three dimensions:

CV = 3R
T 3

T 3 + Θ3
V (T )

, (33)

where ΘV (T ) is the temperature at CV = 3R/2. At low
temperature, the following equation can be written:

CV = 3R

(
T

ΘV (T )

)3

. (34)

From Eqs. (5) and (34), the following equation is
obtained:

ΘV (T ) = ΘD(T )

(
5

4π4

)1/3

. (35)
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DeSorbo has predicted that one dimensional solid has
CV ∝ T at low temperatures [13]. Benedict et al.
have predicted that a two-dimensional graphite sheet has
CV ∝ T 2 and Cel ∝ T 2, a one dimensional single-walled
carbon nanotube has CV ∝ T and Cel ∝ T , bulk graphite
has CV ∝ T 2−3, and multi-walled tubes show a range of
behavior intermediate between CV ∝ T and CV ∝ T 2−3,
at low temperatures [14]. De Heer has shown that grap-
hite has CV ∝ T 3 and a three dimensional character
from 0 to 150 K, and has CV ∝ T 2 and a two dimensio-
nal character above 150 K [15]. Hone et al. have shown
experimentally that single-walled carbon nanotubes re-
present CV ∝ T and one dimensional character at low
temperature, and represent CV ∝ T 2 and a two dimensi-
onal character at higher temperatures, and the bundles of
single-walled carbon nanotubes represent CV ∝ T 3 and
a three dimensional character at low temperatures [16].
These results show that the heat capacity changes as a
power of the temperature CV ∝ T 1−3, depending on di-
mension and temperature.

Wien has proposed the following equation for the total
radiation density at all frequencies [4]:

u(T ) =
αn!(
β′

T

)n+1 , (36)

where α = acγ+1, n = − (γ + 2), β
′

= b/c, c is the speed
of electromagnetic radiation in vacuum, a and b are con-
stants. If n = 3 is used in Eq. (36), the following equation
is obtained:

u(T )3 =
6a

b4
T 4 = βT 4. (37)

This is Stefan’s law which has been derived for three de-
grees of freedom and three dimensions. If the parameter
n in Eq. (36) is assumed to be equal to dimension, then,
the following equations can be derived from Eq. (36) for
n = 2 and n = 1, respectively:

u(T )2 =
b

3
βT 3, (38)

u(T )1 =
b2

6
βT 2. (39)

Equations (37–39) can also be derived, if the Stefan’s law
is written as follows:

u(T )n = np = T
dp

dT
− p. (40)

From Eqs. (37–39), the following equation can be written:

u (T )n = np = (const)nT
n+1. (41)

From Eq. (21) and Eq. (37), the following equation can
be written:

U (T ) =
3Vmc

2

2v3
u(T )

3
. (42)

Similar equations can be written for u(T )2 and u(T )1.
For n dimensions, the following relation can be written:

U(T )n ∝ u(T )n. (43)
From Eq. (40), the following equation can be written:

p =
T

n+ 1

dp

dT
. (44)

Substitution of Eq. (44) into Eq. (26) gives:

ka(Nt −N)
dp

dT
=
n+ 1

T
keN. (45)

From Eq. (41) and Eq. (43), the following equation can
be written:(

∂U(T )

∂T

)
V

= CV ∝
dp

dT
∝ Tn. (46)

Substitution of Eq. (46) into Eq. (45) gives:
N

Nt
=
CV
3R

=
Tn

Tn + Θn
V (T )

. (47)

At low temperature, the following equation can be
written:

CV = 3R

(
T

ΘV (T )

)n
. (48)

Equation (48) agrees with the relation given above CV ∝
T 1−3 ∝ Tn.

Similar equation can be written for the heat capacity
at constant pressure CP :

CP = CP max
Tn

Tn + Θn
p (T )

, (49)

where CP max is the heat capacity at T → ∞, ΘP (T )
is the temperature at CP max/2. CP max was not known
before and can be predicted from Eq. (49). For n = 3,
the following equation can be written:

CP = CP max
T 3

T 3 + Θ3
p(T )

. (50)

For the electronic heat capacity, the following equation
can be written:

Cel =
3

2
R

Tn

Tn + TnE (T )
, (51)

where TE(T ) is the temperature at Cel = 3R/4. If n = 1
and T � TE, the following equation can be written from
Eq. (51):

Cel =
3

2
R

T

TE(T )
. (52)

From Eq. (8) and Eq. (52), the following equation is
obtained:

TE =
3

π2
TF. (53)

At low temperatures, the heat capacity of solids may
be written as the sum of electronic and lattice heat
capacities:

CV = γT +AT 3, (54)
where γ and A are characteristic constants of the so-
lid [7]. A plot of CV /T versus T 2 should be a straight
line with slope A and intercept γ. These plots allow
both the determination of the Debye temperature ΘD(0)
through A = 12π4Rs/5Θ3

D(0) and the observed value of
the Fermi temperature through γ = π2RT/2TF.

2.2. Entropy equations

The absolute entropy is given by [2–4]:

S =

∫ T

0

(
C

T

)
dT . (55)
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Substitution of Eq. (51) into Eq. (55) and integration
give the electronic molar entropy:

Sel,n =
3

2n
R ln

((
T

TE(T )

)n
+ 1

)
. (56)

Substitution of Eq. (47) into Eq. (55) and integration
give the lattice molar entropy at constant volume:

SV,n =
3

n
R ln

((
T

ΘV (T )

)n
+ 1

)
. (57)

For n = 3, the following equation is obtained from
Eq. (57):

SV,n=3 = R ln

((
T

ΘV (T )

)3

+ 1

)
. (58)

Equation (58) is comparable with Eq. (4) given by Debye.
Substitution of Eq. (49) into Eq. (55) and integration give
the lattice molar entropy at constant pressure:

SP,n =
CP max

n
ln

((
T

ΘP (T )

)n
+ 1

)
. (59)

2.3. Enthalpy equations

The absolute enthalpy is given by [2, 3]:

H =

∫ T

0

CP dT . (60)

Substitution of Eq. (49) into Eq. (60) gives:

Hp,n = CP max

∫ T

0

Tn

Θn
P (T ) + Tn

dT . (61)

The integral in Eq. (61) can only be solved for n = 1,
n = 2 and n = 3. This shows that n is related to the
dimension. From Eq. (61), the lattice molar enthalpy
equations at constant pressure are obtained for n = 1,
n = 2 and n = 3:

Hp,n=1 = CP max

[
T + ΘP ln

(
ΘP

T + ΘP

)]
, (62)

Hp,n=2 = CP max

[
T −ΘP tan−1

(
T

ΘP

)]
, (63)

Hp,n=3 = CP max

[
− π

6
√

3
ΘP + T − ΘP

3
ln (ΘP + T )

+
ΘP

6
ln
(
Θ2
P −ΘPT + T 2

)
−ΘP√

3
tan−1

(
2T −ΘP√

3ΘP

)]
. (64)

If CV is used instead of CP in Eq. (61), the following
equation can be written:

HV,n = 3R

∫ T

0

Tn

Θn
V (T ) + Tn

dT . (65)

From Eq. (65), the lattice molar enthalpy equations at
constant volume are obtained for n = 1, n = 2 and n = 3.

HV,n=1 = 3R

[
T + ΘV ln

(
ΘV

T + ΘV

)]
, (66)

HV,n=2 = 3R

[
T −ΘV tan−1

(
T

ΘV

)]
, (67)

HV,n=3 = 3R

[
− π

6
√

3
ΘV + T − ΘV

3
ln (ΘV + T )

+
ΘV

6
ln
(
Θ2
V −ΘV T + T 2

)
−ΘV√

3
tan−1

(
2T −ΘV√

3ΘV

)]
. (68)

If Cel is used instead of CP in Eq. (61), the following
equation can be written.

Hel,n =
3

2
R

∫ T

0

Tn

TnE (T ) + Tn
dT . (69)

From Eq. (69), the electronic molar enthalpy equations
are obtained for n = 1, n = 2 and n = 3.

Hel,n=1 =
3

2
R

[
T + TE ln

(
TE

T + TE

)]
, (70)

Hel,n=2 =
3

2
R

[
T − TEtan−1

(
T

TE

)]
, (71)

Hel,n=3 =
3

2
R

[
− π

6
√

3
TE + T − TE

3
ln (TE + T )

+
TE

6
ln
(
T 2

E − TET + T 2
)

− TE√
3

tan−1
(

2T − TE√
3TE

)]
. (72)

3. Results and discussion

Experimental heat capacity data at constant volume
of copper for the temperature range from 1 K to 400 K
were obtained from Ref. [17] and are shown in Fig. 1.
The value of ΘV was found to be 78.4 K. The value of
ΘD(0) was found to be 344 K. ΘD is found to be 334.8 K
by using ΘV = 78.4 K in Eq. (35). The heat capacity
values, calculated by using ΘD = 344 K in Eq. (1) and
the heat capacity values calculated by using ΘV = 78.4 K
and n = 3 in Eq. (33) are also shown in Fig. 1.

The values of ΘD(T ) were calculated from the nume-
rical solution of Eq. (1). Temperature dependence of
ΘD(T ) of copper is shown in Fig. 2. It is seen from Fig. 2
that ΘD(T ) increases monotonously from 138 K to the
maximum 330 K with increasing temperature from 1 K
to 12 K and passes through a broad maximum at about
12 K. It then decreases and passes through a minimum
310 K at about 35 K. It starts to increase towards 315 K
at about 50 K.

By substituting Eq. (35) into Eq. (47), the following
equation is obtained:

n =
log
(

3R
CV
− 1
)

log
(

ΘD (T ) (5/4π4)
1/3

/T
) . (73)
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Fig. 1. Temperature dependence of heat capacity of
copper.

Fig. 2. Temperature dependence of ΘD(T ) and ΘV (T )
of copper.

The temperature dependence of n of copper, obtained
from ΘD(T ) is shown in Fig. 3. It is seen from Fig. 3
that the value of n is about 3 from 1 K to 20 K. It then
decreases and passes through a minimum 2.90 at about
40 K and then increases to 3 at 50 K. n exhibits a crosso-
ver from 3 to 2 at about 80 K. After 80 K, n takes a value
of about 2. If the ΘD(T ) is taken as a constant value of
330 K from 1 K to 12 K, n increases from 2.40 to 3.0
with increasing temperature from 1 K to 12 K. Figure 2
and Eq. (73) show that ΘD(T ) depends on temperature
and n.

Fig. 3. Temperature dependence of n for copper.

The following equation is obtained from Eq. (47):

ΘV (T ) = T

(
3R

CV
− 1

)1/n

. (74)

The values of ΘV (T ) were calculated by using n = 3 at
all temperatures, and n = 3 from 1 K to 80 K and n = 2
from 80 K to 400 K in Eq. (74). Temperature dependence
of ΘV (T ) is also shown in Fig. 2. It is seen from Fig. 2
that the temperature dependence of ΘV (T ) obtained by
using n = 3 from 1 K to 80 K and n = 2 from 80 K
to 400 K is similar to ΘD(T ). But, ΘV (T ) obtained by
using n = 3, is different at all temperatures.

The relationship between n and ΘV (T ) can be obtai-
ned from the first and second derivatives of Eq. (47):

ΘM (T ) = ΘV (T )

(
n− 1

n+ 1

)1/n

, (75)

where ΘM (T ) is the temperature corresponding to the
inflexion point of the plot of Eq. (47) and exists if n > 1.

The non-monotonic behavior of the CV /T 3 function at
low temperatures is shown in Fig. 4. In this function, n
is taken to be 3. According to Eq. (75), ΘV (T ) should
change with temperature. The CV /T 3 function is in-
versely proportional to Θ3

V (T ). Therefore, the CV /T 3

function will show the inverse behavior to Θ3
V (T ).

Fig. 4. CV /T 3 versus T for copper.

In order to evaluate the predictive ability of the mo-
dels, the root mean square error of prediction (RMSEP)
is used:

RMSEP(CV ) =

√√√√ m∑
i=1

(CV pred − CV exp)
2

m
, (76)

where CV exp is the experimental heat capacity, CV pred
is the predicted heat capacity and m is the number of
heat capacities. The value of RMSEP obtained for the
proposed models by using ΘV (T ) = 78.4 K and n = 3
from 1 K to 80 K and n = 2 from 80 K to 400 K was
found to be 0.4302. The value of RMSEP obtained for
the Debye model was found to be 0.6523. These results
and Fig. 1 show that the proposed model obtained by
using n = 3 from 1 K to 80 K and n = 2 from 80 K to
400 K fits the experimental data better than the other
models. This result also shows that copper exhibits di-
mensionality crossover from 3 to 2 at about 80 K.
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Temperature dependence of entropies obtained from
the Debye, the proposed and the polynomial models are
shown in Fig. 5.

Fig. 5. Temperature dependence of entropy of copper.

The RMSEP is obtained from the following equation.

RMSEP(S) =

√√√√ m∑
i=1

(Spred − Spoly)
2

m
, (77)

where Spoly is the entropy obtained from the polynomial
model and Spred is the entropy obtained from the pro-
posed and the Debye models. The values of RMSEP
obtained for the proposed and Debye models were found
to be 0.4251 and 1.262, respectively. These results and
Fig. 5 show that the proposed model fits the data better
than the Debye model.

Enthalpy equation cannot be obtained from the Debye
model. Temperature dependence of enthalpies obtained
from the proposed and polynomial models are shown in
Fig. 6.

The RMSEP is obtained from the following equation.

RMSEP(H) =

√√√√ m∑
i=1

(Hpred −Hpoly)
2

m
, (78)

where Hpoly is the enthalpy obtained from polynomial
model and Hpred is the enthalpy obtained from the pro-
posed model. The value of RMSEP was found to be
31.59. This result and Fig. 6 show that the proposed
model fits the data very well.

If the temperature dependence of Vm and v are neg-
lected, and Vm = 7.116 cm3/mol, v = 2612 m/s at room
temperature, c = 3× 108 m/s, h = 6.626× 10−34 J s and
kB = 1.38× 10−23 J/K are used in Eqs. (30–32), the fol-
lowing equations are obtained for n = 3.

K = 1.94× 1011/T (3R− CV ), (79)

Θ3
V = 2× 104(3R− CV ). (80)

Fig. 6. Temperature dependence of enthalpy of
copper.

4. Conclusions

New equations for lattice and electronic heat capaci-
ties, entropies and enthalpies at constant volume and
constant pressure were derived and applied to the ex-
perimental constant volume heat capacity data of cop-
per. The value of ΘV was found to be 78.4 K for copper.
Copper shows the dimensionality crossover from n = 3 to
n = 2 at about 80 K. ΘV (T ) is proportional to ΘD(T ).
Temperature dependence of ΘD(T ) and non-monotonic
behavior were discussed. The relationship between n and
ΘV (T ) was given. The root mean square error of pre-
diction was used to compare the models. The heat capa-
city and entropy values predicted by the proposed model
were compared with the values predicted by the Debye
model. The results show that the proposed model fits the
data better than the Debye model. Enthalpy equations
cannot be obtained from the Debye model. The enthalpy
equations derived in this study were compared with the
polynomial model. The equation for the photon absorp-
tion equilibrium constant of copper was derived.
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