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This paper studies embedded solitons that are confined to continuous spectrum, with χ(2) and χ(3) nonlinear
susceptibilities. Bright and singular soliton solutions are obtained by the method of undetermined coefficients.
Subsequently, the Lie symmetry analysis and mapping method retrieves additional solutions to the model such
as shock waves, singular solitons, cnoidal waves, and several others. Finally, a conservation law for this model is
secured through the Lie symmetry analysis.
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1. Introduction

Optical solitons is one of the most active areas of rese-
arch in the field of nonlinear optics [1–14]. It is evident,
from a variety of reported results, that the main focus
is on integrability issue in fiber optics, photonic crystal,
metamaterials and metasurfaces. This paper, however,
changes gear to focus on embedded solitons that come
with χ(2) and χ(3) nonlinearities.

Embedded solitons are nonlinear waves that become
confined to the continuous spectrum of a nonlinear sy-
stem. Such solitons arise in presence of opposing disper-
sion and competing nonlinearities at fundamental har-
monics (FH) and second harmonics (SH). This is an area
of nonlinear optics where very minimal results are visi-
ble [11]. In the past, it is only solitons with quadratic
nonlinearity that were analyzed in detail and quite a few
results were disseminated [1, 11].

The focus of this paper will be the integrability aspect
and conservation law of these embedded solitons that
are modeled by coupled nonlinear Schrödinger’s equation
(NLSE) with such nonlinearities. The method of unde-
termined coefficients retrieves bright and singular soliton
solutions to the model. The mapping principle will ex-
tract additional solutions that include cnoidal waves and
snoidal waves. In the limiting case, when the modulus
of ellipticity approaches zero or unity, bright, dark and
singular soliton solutions or periodic waves fall out. Sub-
sequently, the Lie symmetry analysis retrieves bright soli-

tons and rational solutions. Finally, using the multipliers
approach and double reduction technique, conservation
law is derived. These are detailed in the next upcoming
sections.

1.1. Governing equation

The governing equation for solitons in quadratic non-
linear media is given by [1, 10, 11]:

iqt + a1qxx + b1qxt + c1q
∗r + d1|q|2q = 0, (1)

irt + a2rxx + b2rxt + c2r + d2q
2 + δ|q|2r = 0. (2)

In Eqs. (1) and (2), the dependent variables are q(x, t)
and r(x, t) which are complex valued functions represen-
ting FH and SH, respectively. The independent variables
x and t are spatial and temporal variables, respectively.
The coefficients aj and bj are from group velocity disper-
sion and spatio-temporal dispersion, respectively. Also
cj is the group-velocity mismatch because of frequency
difference between FH and SH fields.

2. Soliton solutions

The method of undetermined coefficients is one of the
most popular modern approaches to obtain the soliton
solutions to such governing equations since its first ap-
pearance a couple of years ago. In fact, this approach has
been successfully applied to extract the soliton solutions
to water wave model, plasma physics model as well as in
nonlinear optics and nuclear physics. In order to study
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the details of this model, the starting hypothesis is [1, 6,
10, 11]:

q(x, t) = P1(x, t)e
iφ(x,t), (3)

r(x, t) = P2(x, t)e
2 iφ(x,t), (4)

where Pl(x, t) is the amplitude component of the soliton
and φ(x, t) represents the phase component with

φ(x, t) = −κx+ ωt+ θ. (5)
Here, κ is the soliton frequency, ω is the soliton wave
number and θ is the phase constant. Substituting (3),
(4) and (5) into (1) and (2) and decomposing into real
and imaginary parts gives(

ω + a1κ
2 − b1κω

)
P1 − a1

∂2P1

∂x2
− b1

∂2P1

∂x∂t

−c1P1P2 − d1P 3
1 = 0 (6)

and

v =
b1ω − 2a1κ

1− b1κ
, (7)

respectively, from the first component. Here v is the
speed of the soliton. Then, the second component re-
spectively gives(

2ω + 4a2κ
2 − 4b2κω − c2

)
P2 − a2

∂2P2

∂x2
− b2

∂2P2

∂x∂t

−d2P 2
1 − δP 2

1P2 = 0 (8)
and

v =
2b2ω − 4a2κ

1− 2b2κ
. (9)

From (7) and (9) equating the two values of the soliton
speed v leads to

a1 = 2a2 (10)
and

a1 = 2a2. (11)
Thus, the governing equations modify to

iqt + 2aqxx + 2bqxt + c1q
∗r + d1|q|2q = 0, (12)

irt + arxx + brxt + c2r + d2q
2 + δ|q|2r = 0. (13)

Hence, the real part equations from the two components
can be written as(

ω + 2aκ2 − 2bκω
)
P1 − 2a

∂2P1

∂x2
− 2b

∂2P1

∂x∂t
− c1P1P2

−d1P 3
1 = 0 (14)

and(
2ω + 4aκ2 − 4bκω − c2

)
P2 − a

∂2P2

∂x2
− b∂

2P2

∂x∂t

−d2P 2
1 − δP 2

1P2 = 0. (15)
These two equations will now be studied further along in
the next two subsections for bright and singular solitons.

2.1. Bright solitons

For bright solitons, the starting hypothesis is given
by [1, 10, 11]:

Pl = Al sech
plτ (16)

for l = 1, 2 where

τ = B(x− vt). (17)
Here Al represents the amplitudes of the solitons in the
two components and B is the inverse width of these soli-
tons and v, as defined before is the speed of the solitons.
The unknown exponents pl will be determined. Substitu-
ting (16) into the two components (14) and (15) simplifies
them to{

ω (2bκ− 1)− 2aκ2 + 2(a− bv)p21B2
}
sechp1τ

+c1A2 sech
p1+p2τ − 2p1(p1 + 1)(a− bv)B2

×sechp1+2τ + d1A
2
1 sech

3p1τ = 0 (18)
and[

p22(a− bv)A2B
2 +A2

{
2ω(2bκ− 1)− 4aκ2 − c2

}]
sechp2τ − p2(p2 + 1)(a− bv)A2B

2 sechp2+2τ

+d2A
2
1 sech

2p1τ + δA2
1A2 sech

2p1+p2τ = 0, (19)
respectively. The balancing principle applied to (18) and
(19) leads to

p1 = 1 (20)
and

p2 = 2. (21)
From (18), setting the coefficients of linearly independent
functions to zero leads to

ω =
4aκ2 − c1A2 − d1A2

1

2 (2bκ− 1)
(22)

and

v =
4aB2 − c1A2 − d1A2

1

4bB2
. (23)

Similarly, from (19), the coefficients of linearly indepen-
dent functions give

ω =
3A2

(
4aκ2 − c2

)
− 3d2A

2
1 − 2δA2

1A2

6A2 (2bκ− 1)
(24)

and

v =
6aB2 − δA2

1

6bB2
. (25)

Now equating the two expressions for the soliton speed
(v) from (23) and (25), gives the soliton amplitude ratios

A2
1

A2
=

3c1
2δ − 3d1

. (26)

Again equating the wave numbers of the two components
from (22) and (24) yields another relation between the
amplitudes A1 and A2:

3d2A
2
1 −A2

1A2(3d1 − 2δ) + 3c2A2 − 3c1A
2
2 = 0. (27)

From (26) and (27), one retrieves another constraint con-
dition for bright solitons to exist that is given by

3d2c1 + c2 (2δ − 3d1) = 0. (28)
Thus, bright 1-soliton solution to the model is given by

q(x, t) = A1 sech[B(x− vt)]e i (−κx+ωt+θ), (29)

r(x, t) = A2 sech
2 [B(x− vt)]e2 i (−κx+ωt+θ), (30)

with all necessary constraints and parameter definitions
in place as discussed.

2.1.1. Conservation law
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To obtain conservation laws for the coupled system
(12)–(13), it can be shown that this system is conserved
for c1 = d2. That is the system is a total divergence
DtT

t+DxT
x, where T t is the density and T x is the flux.

For this combination, we get

T t =
1

2

[
|q|2 + |r|2 + ib (qq∗x − q∗qx)

+
ib

2
(rr∗x − r∗rx)

]
,

T x =
1

2

[ ib
2
(qq∗t − q∗qt) +

ib

4
(rr∗t − r∗rt)

+ia (qq∗x − q∗qx) +
ia

2
(rr∗x − r∗rx)

]
.

Therefore the conserved quantity is given by

I =

∫ ∞
−∞

{
2
(
|q|2 + |r|2

)
+ 2ib (qq∗x − q∗qx)

+ib (rr∗x − r∗rx)
}
dx =

4

B

{
A2

1 (1− 2κb) +A2
2 (1− 4κb)

}
,

where the integral is evaluated using the soliton solutions
from (29) and (30). This represents the sum of total
power and linear momentum of the two pulses.

2.2. Singular solitons

In this case the starting hypothesis is [1, 10, 11]:
Pl = Alcsch

plτ (31)
for l = 1, 2. The real part, from the two component, gi-
ves{

ω (2bκ− 1)− 2aκ2 + 2(a− bv)p21B2
}
cschp1τ

+c1A2csch
p1+p2τ − 2p1(p1 + 1)(a− bv)B2cschp1+2τ

+d1A
2
1csch

3p1τ = 0 (32)
and[

p22(a− bv)A2B
2 +A2

{
2ω(2bκ− 1)− 4aκ2 − c2

}]
×cschp2τ − p2(p2 + 1)(a− bv)A2B

2cschp2+2τ

+d2A
2
1csch

2p1τ + δA2
1A2csch

2p1+p2τ = 0. (33)
Balancing principle, applied to (32) and (33) leads to
the same values of pj for j = 1, 2 as given by (20) and
(21), respectively. The coefficients of linearly indepen-
dent functions from (32), upon setting to zero, leads to
the same value of ω as in (22). However, the speed of the
soliton is given by

v =
4aB2 + c1A2 + d1A

2
1

4bB2
. (34)

Similarly, from the coefficients of linearly independent
functions in (33) gives

ω =
3A2

(
4aκ2 − c2

)
− 3d2A

2
1 + 2δA2

1A2

6A2 (2bκ− 1)
, (35)

and

v =
6aB2 + δA2

1

6bB2
. (36)

Equating the two expressions for the soliton speed from
(34) and (36) also gives (26). Next, equating the two ex-

pressions of the soliton wave number (ω) from (22) and
(35) gives

3d2A
2
1 −A2

1A2(3d1 + 2δ) + 3c2A2 − 3c1A
2
2 = 0. (37)

Finally from (26) and (37), one can recover

A1 =
1

2

√
3 {3 (c1d2 − c2d1) + 2δc2}

δ (2δ − 3d1)
, (38)

and

A2 =
3 (c1d2 − c2d1) + 2δc2

4δc1
. (39)

The free parameter relation A1 given by (38) introduces
the constraint condition

δ (2δ − 3d1) {3 (c1d2 − c2d1) + 2δc2} > 0, (40)
for singular solitons to exist.

Finally, the singular 1-soliton for quadratic nonlinear
media is given by

q(x, t) = A1csch [B(x− vt)]e i (−κx+ωt+θ) (41)

r(x, t) = A2csch
2 [B(x− vt)]e2 i (−κx+ωt+θ). (42)

3. Mapping methods

This section will focus on the integrability aspect of
the model (1) and (2) by the aid of mapping method.
This method leads to solutions in terms of the Jacobi el-
liptic functions (JEFs) which leads to solutions in terms
of solitons and shock waves in limiting case of the mo-
dulus of ellipticity. These are detailed in the following
subsections.

3.1. Mathematical analysis

A nonlinear evolution equation (NLEE) in two varia-
bles x and t can be written in the form

F (u, ut, ux, . . .) = 0. (43)
We look for its travelling wave solution (TWS) of the
form

u(x, t) = u(ξ), ξ = k(x− ct), (44)
where k, c are constants to be determined. Substituting
Eq. (44) into Eq. (43), we obtain an ordinary differen-
tial equation (ODE) and we search for its solution in the
form

u(ξ) =

n∑
i=0

Aif
i, (45)

where n is a positive integer which may be determined by
balancing the linear term of the highest order with the
nonlinear term in the reduced ODE, Ai are constants to
be determined and f satisfies the elliptic equation of the
first kind

f ′′ = pf + qf3, f ′
2
= pf2 +

1

2
qf4 + r. (46)

The prime denotes derivative with respect to ξ. We sub-
stitute Eq. (45) into the ODE and use Eq. (46) to get
the constants Ai, k, c and the parameters p, q, r. Thus
a mapping relation is established between Eq. (46) and
Eq. (43) through Eq. (45).
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The advantage of this method is that it gives a vari-
ety of solutions in terms of JEFs because the squares of
first derivatives of all twelve (12) JEFs can be expressed
in powers of themselves as given by Eq. (45). The JEFs
sn(ξ,m), cn(ξ,m) and dn(ξ,m) where m is known as the
modulus of the elliptic function with 0 < m < 1 has the
following properties:
when m→ 0,

snξ → sin ξ, cnξ → cos ξ,dnξ → 1, (47)
and whenm→ 1,

snξ → tanhξ, cnξ → sechξ,dnξ → sechξ. (48)
Three other JEFs nsξ,ncξ and ndξ are reciprocals of
snξ, cnξ and dnξ, respectively. The different ratios
of these six (6) JEFs give rise to six (6) other JEFs
scξ, cdξ,dsξ, csξ,dcξ and sdξ.

3.2. JEF solutions

We follow the analysis in Sect. 2 and use Eq. (26) to
reduce Eq. (14) into the form

(ω + 2aκ2 − 2bκω)P1 − 2a
∂2P1

∂x2
− 2b

∂2P1

∂x∂t

−2δ

3
P 3
1 = 0. (49)

Considering the TWS given by Eq. (17), Eq. (49) can be
reduced to

L1P
′′
1 + L2P1 + L3P

3
1 = 0 (50)

where
L1 = 2B2(bv − a), L2 = ω + 2aκ2 − 2bκω,

L3 = −2δ (51)
and prime denotes differentiation with respect to τ .

Following the analysis in Sect. 4.1, we can write the
solution of Eq. (50) as

P1(τ) = A0 +A1f(τ). (52)
We substitute Eq. (52) into Eq. (50) and use Eq. (46) to
generate a system of algebraic equations which are obtai-
ned by equating the coefficients of powers of f to zero as
follows:

f3 : qL1A1 + L3A
3
1 = 0, (53)

f2 : 3L3A0A
2
1 = 0, (54)

f1 : (pL1 + L2)A1 + 3L3A
2
0A1 = 0, (55)

f0 : L2A0 + L3A
3
0 = 0. (56)

Equations (53)–(56) give

A0 = 0, A1 = ±

√
qL2

pL3
, pL1 + L2 = 0. (57)

Thus our solutions given by Eqs. (3) and (4) can be writ-
ten as

q(x, t) = ±

√
qL2

pL3
f(B(x− vt))e i (−κx+ωt+θ), (58)

r(x, t) =
2δ − 3d1

3c1

qL2

pL3
f2(B(x− vt))

×e2 i (−κx+ωt+θ). (59)
Case 1. f(τ) = snτ and f(τ) = cdτ
In this case, we can see from Eq. (46) that p = −(1 +

m2), q = 2m2, r = 1.
Thus the PWSs of Eqs. (1) and (2) can be written as

q(x, t) = ±
√
m2(ω + 2aκ2 − 2bκω)

1 +m2
sn(B(x− vt))

×e i (−κx+ωt+θ), (60)

r(x, t) =
2δ − 3d1

3c1

m2(ω + 2aκ2 − 2bκω)

1 +m2

×sn2(B(x− vt))e2 i (−κx+ωt+θ). (61)
and

q(x, t) = ±
√
m2(ω + 2aκ2 − 2bκω)

1 +m2
cd(B(x− vt))

×e i (−κx+ωt+θ), (62)

r(x, t) =
2δ − 3d1

3c1

m2(ω + 2aκ2 − 2bκω)

1 +m2
cd2(B(x− vt))

×e2 i (−κx+ωt+θ). (63)
As m→ 1, Eq. (60) gives rise to the shock wave solution

q(x, t) = ±
√

(ω + 2aκ2 − 2bκω)

2
tanh(B(x− vt))

×e i (−κx+ωt+θ), (64)
and Eq. (61) gives rise to the SWS

r(x, t) =
2δ − 3d1

3c1

(ω + 2aκ2 − 2bκω)

2
tanh2(B(x− vt))

×e2 i (−κx+ωt+θ). (65)
Case 2. f(τ) = cnτ
Here, we can obtain from Eq. (46) that p = 2m2−1, q =

−2m2, r = 1−m2.
Now, the PWSs of Eqs. (1) and (2) can be written as

q(x, t) = ±

√
m2(ω + 2aκ2 − 2bκω)

δ(2m2 − 1)
cn(B(x− vt))

×e i (−κx+ωt+θ), (66)

r(x, t) =
2δ − 3d1

3c1

m2(ω + 2aκ2 − 2bκω)

δ(2m2 − 1)

×cn2(B(x− vt))e2 i (−κx+ωt+θ). (67)
As m→ 1, Eq. (66) leads us to the SWSs

q(x, t) = ±
√

(ω + 2aκ2 − 2bκω)

δ
sech(B(x− vt))

×e i (−κx+ωt+θ), (68)
and Eq. (67) gives rise to the SWS

r(x, t) =
2δ − 3d1

3c1

(ω + 2aκ2 − 2bκω)

δ

×sech2(B(x− vt))e2 i (−κx+ωt+θ). (69)
Case 3. f(τ) = csτ
In this case, we deduce from eq. (46) that

p = 2−m2, q = 2, r = 1−m2.

Therefore, the PWSs of Eqs. (1) and (2) can be written
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as

q(x, t) = ±

√
−ω + 2aκ2 − 2bκω

δ(2−m2)
cs(B(x− vt))

×e i (−κx+ωt+θ), (70)

r(x, t) = −2δ − 3d1
3c1

ω + 2aκ2 − 2bκω

δ(2−m2)
cs2(B(x− vt))

×e2 i (−κx+ωt+θ). (71)
As m→ 0, Eqs. (70) and (71) give rise to the trigonome-
tric function solutions

q(x, t) = ±
√
−ω + 2aκ2 − 2bκω

2δ
cot(B(x− vt))

×e i (−κx+ωt+θ), (72)

r(x, t) = −2δ − 3d1
3c1

ω + 2aκ2 − 2bκω

2δ
cot2(B(x− vt))

×e2 i (−κx+ωt+θ). (73)
As m → 1, Eqs. (70) and (71) lead to the singular wave
solutions

q(x, t) = ±
√
−ω + 2aκ2 − 2bκω

δ
csch(B(x− vt))

×e i (−κx+ωt+θ), (74)

r(x, t) = −2δ − 3d1
3c1

ω + 2aκ2 − 2bκω

δ

×csch2(B(x− vt))e2 i (−κx+ωt+θ). (75)

Case 4. f(τ) = nsτ and f(τ) = dcτ

Here, we get from Eq. (46) that p = −(1 +m2), q =
2, r = m2.

Thus the PWSs of Eqs. (1) and (2) can be written as

q(x, t) = ±

√
ω + 2aκ2 − 2bκω

δ(1 +m2)
ns(B(x− vt))

×e i (−κx+ωt+θ), (76)

r(x, t) =
2δ − 3d1

3c1

ω + 2aκ2 − 2bκω

δ(1 +m2)
ns2(B(x− vt))

×e2 i (−κx+ωt+θ), (77)
and

q(x, t) = ±

√
ω + 2aκ2 − 2bκω

δ(1 +m2)
dc(B(x− vt))

×e i (−κx+ωt+θ), (78)

r(x, t) =
2δ − 3d1

3c1

ω + 2aκ2 − 2bκω

δ(1 +m2)
dc2(B(x− vt))

×e2 i (−κx+ωt+θ). (79)
As m → 0, Eqs. (76)–(79) give rise to the trigonometric
function solutions

q(x, t) = ±
√
ω + 2aκ2 − 2bκω

δ
csc(B(x− vt))

×e i (−κx+ωt+θ), (80)

r(x, t) =
2δ − 3d1

3c1

ω + 2aκ2 − 2bκω

δ
csc2(B(x− vt))

×e2 i (−κx+ωt+θ), (81)
and

q(x, t) = ±
√
ω + 2aκ2 − 2bκω

δ
sec(B(x− vt))

×e i (−κx+ωt+θ), (82)

r(x, t) =
2δ − 3d1

3c1

ω + 2aκ2 − 2bκω

δ
sec2(B(x− vt))

×e2 i (−κx+ωt+θ). (83)
As m→ 1, Eqs. (76) and (77) generate the singular wave
solutions

q(x, t) = ±
√
ω + 2aκ2 − 2bκω

2δ
coth(B(x− vt))

×e i (−κx+ωt+θ), (84)

r(x, t) =
2δ − 3d1

3c1

ω + 2aκ2 − 2bκω

2δ
coth2(B(x− vt))

×e2 i (−κx+ωt+θ). (85)

4. Lie symmetry analysis

In this section, we will perform the Lie classical method
[2, 7–9] on system of Eqs. (12) and (13). For complex-
valued functions q(x, t) and r(x, t), the split into real and
imaginary functions is carried out as

q(x, t) = P1(x, t)e
iφ, r(x, t) = P2(x, t)e

2 iφ, (86)
where phase component is given by

φ = −kx+ ωt+ θ. (87)
Here θ is phase constant.

Using (86), Eqs. (12) and (13) decompose into the fol-
lowing system of equations:

(ω + 2ak2 − 2bkω)P1 − 2aP1xx − 2bP1xt − c1P1P2

−d1P 3
1 = 0, (2ω + 4ak2 − 4bkω − c2)P2 − aP2xx

−bP2xt − d2P 2
1 − δP 2

1P2 = 0, (2bk − 1)P1t

+2(2ak − bω)P1x = 0,

(2bk − 1)P2t + 2(2ak − bω)P2x = 0. (88)
Let us consider the Lie group of point transformations

t∗ = t+ ετ(x, t, P1, P2) +O(ε2)x∗ = x+ εξ(x, t, P1, P2)

+O(ε2)P ∗1 = P1 + εη1(x, t, P1, P2) +O(ε2)P ∗2 =

P2 + εη2(x, t, P1, P2) +O(ε2) (89)
with small parameter ε� 1.

We find that the infinitesimal functions ξ, τ, η1 and η2
must satisfy the invariance conditions

(ω + 2ak2 − 2bkω)η1 − 2aηxx1 − 2bηxt1

−c1(η1P2 + η2P1)− 3d1P
2
1 η1 = 0,

(2ω + 4ak2 − 4bkω − c2)η2 − aηxx2 − bηxt2 − 2d2P1η1

−δ(P 2
1 η2 + 2P1P2η1) = 0,
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(2bk − 1)ηt1 + 2(2ak − bω)ηx1 = 0,

(2bk − 1)ηt2 + 2(2ak − bω)ηx2 = 0, (90)
where ηt1, ηt2, ηxx1 , ηxx2 , ηxt1 and ηxt2 are extended infinite-
simals. For reduction of system of Eqs. (88), we will
consider the following two cases:

Case (i). When k = 1
2b and ω = a

b2 . In this case we
obtain the following symmetries:

ξ = C1 + C3(−x+
2a

b
t), τ = C2 + tC3, η1 = 0,

η2 = 0, (91)
where C1, C2 and C3 are arbitrary constants.

Corresponding infinitesimal generators are given by

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 =

(
−x+

2a

b
t

)
∂

∂x
+ t

∂

∂t
. (92)

To obtain the symmetry reductions of Eqs. (88), we have
to solve the characteristic equation

dx

ξ
=

dt

τ
=

dP1

η1
=

dP2

η2
(93)

where ξ, τ, η1 and η2 are given by (91). To solve (93), we
consider the following cases: (i) V2 + µV1, (ii) V3.

Sub case (i). Vector field V2 + µV1
Solving characteristic Eq. (93), we have the following

similarity variables:
σ = x− µt, P1 = F (σ), P2 = G(σ), (94)

where σ is new independent variable and F,G are new
dependent variables.

Using (94) in Eqs. (88), we obtain the following system
of ordinary differential equations (ODEs):

(ω + 2ak2 − 2bkω)F − 2aF ′′ + 2bµF ′′ − c1FG

−d1F 3 = 0,

(2ω + 4ak2 − 4bkω − c2)G− aG′′ + bµG′′ − d2F 2

−δF 2G = 0, (95)
where ′ denotes derivative with respect to σ.

For this system, let us consider a special solution of
the form

F (σ) = A sech(σ), G(σ) = B sech2(σ), (96)
where A and B are arbitrary real constants.

Substituting (96) into system of Eqs. (95), we obtain
the following solution:

F (σ) = ± 1

2b

√
6a

δ
sech(σ), G(σ) =

− 3ad2
2δc2b2

sech2(σ) (97)

with

µ =
a
(
−1 + 4b2

)
4b3

, c1 =
c2 (−2δ + 3d1)

3d2
. (98)

Corresponding solution of main system (12) and (13) is
as follows:

q(x, t) = ± 1

2b

√
6a

δ
sech

(
x−

[
a
(
4b2 − 1

)
4b3

]
t

)

×e i(−
1
2bx+

a
b2
t+θ),

r(x, t) = − 3ad2
2δc2b2

sech2

(
x−

[
a
(
4b2 − 1q

)
4b3

]
t

)
×e2 i(−

1
2bx+

a
b2
t+θ) (99)

with constraint (98).
Sub case (ii). Vector field V3
In this case, we obtain the following similarity varia-

bles:

σ = xt− at2

b
, P1 = F (σ), P2 = G(σ), (100)

where σ is new independent variable and F,G are new
dependent variables. Using similarity variables (100) into
the system of Eqs. (88), we have
−aF + 4b3(σF ′)′ + 2c1b

2FG+ 2d1b
2F 3 = 0,

(c2b
2 − a)G+ b3(σG′)′ + d2b

2F 2

+δb2F 2G = 0, (101)
where ′ denotes derivative with respect to σ.

We obtain the following solution of the system (101):

F (ξ) =
1

2

√
−2 b

d1σ
,G (ξ) = −d2

δ
. (102)

Corresponding solution of main system of Eqs. (12)
and (13) is as follows:

q(x, t) =
1

2

√
2b

d1(
at2

b − xt)
e i(−

1
2bx+

a
b2
t+θ), r(x, t) =

−d2
δ
e2 i(−

1
2bx+

a
b2
t+θ). (103)

Case (ii). When k and ω are arbitrary
In this case we obtain the following symmetries:

ξ = F

(
t− bx

2a

)
, (104)

τ =
(2bk − 1)

(−2bω + 4ak)
F

(
t− bx

2a

)
+ 1, (105)

η1 = 0, (106)

η2 = 0, (107)
where F

(
t− bx

2a

)
is arbitrary function.

We consider the special case for F
(
t− bx

2a

)
=

sin
(
t− bx

2a

)
with constraint ω = a

b2k . In this case, we
have the following similarity variables:

ζ =
b

2a
sin

(
t− bx

2a

)
+ 1, P1(x, t) = F (ζ), P2(x, t) =

G(ζ), (108)
where ζ is new independent variable and F,G are new
dependent variables.

Corresponding reduction of Eqs. (88) to system of
ODEs is as follows:

F ′(k − 1) = 0, G′(k − 1) = 0,

8a4(2bk − 2b2k3 − 1)F − b6k(1− 4
a2

b2
(ζ − 1)2)F ′′
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+4ka2b4(ζ − 1)F ′ + 8c1kb
2a3FG+ 8d1kb

2a3F 3 = 0,

(64kba4 + 16c2kb
2a3 − 32a4 − 64a4k3b2)G

−b6k(1− 4
a2

b2
(ζ − 1)2)G′′ + 4ka2b4(ζ − 1)G′

+16d2kb
2a3F 2 + 16δkb2a3F 2G = 0, (109)

where ′ denotes derivative with respect to ζ.
We obtain constant solution of the system of

Eqs. (109). Corresponding solutions of main system of
Eqs. (12)–(13) is as follows:

p(x, t) = le i(−kx+
a

b2k
t+θ), q(x, t) =

me2 i(−kx+
a

b2k
t+θ), (110)

where constants l,m satisfies the following conditions:
a+ 2ab2k3 − 2abk − c1b2km− d1b2kl2 = 0,

(2a+ 4ab2k3 − 4abk − c2b2k)m− d2b2kl2

−δb2kl2m = 0. (111)

5. Conclusions

This paper obtained soliton solutions such as cnoidal
waves and snoidal waves with χ(2) and χ(3) nonlinear
susceptibilities. Bright, dark, and singular soliton solu-
tions are retrieved using several integration algorithms.
These are method of undetermined coefficients, mapping
method as well as the Lie symmetry analysis. In the li-
miting case, when the modulus of ellipticity approaches
zero or unity, soliton solutions or periodic wave soluti-
ons emerge as the case may be. The conserved quan-
tity appears with a limitation on parameter coefficients.
These results pave the way to further research in this
direction. Later, additional integration tool will be ap-
plied to this model to secure soliton and other possible
solutions. These results will be disseminated elsewhere.
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