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Basing on the analytical mechanics methods, the Lagrangian equations of thin elastic rod is constructed. The
definition of conformal invariance for the Lagrange mechanics of elastic rod is given. The criterions that conformal
invariance of elastic rod is the Lie symmetry are obtained based on the Lie point transformation group. The
structure equation and conserved quantity deduced from conformal invariance of elastic rod are constructed. Take
twist rod as an example to illustrate the application of the results got in this paper.
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1. Introduction

The Lie group theory is a power tool to reduce the
order of dynamic systems. An alternative method is to
use the Lie point symmetry group to construct conser-
ved quantities or first integrals. If a sufficient number of
conserved quantities can be obtained by symmetries, ex-
act solutions for dynamic systems can be achieved. The
symmetry methods have been developed as modern tools
to find conserved quantities of dynamic systems.

The research on symmetries and conserved quantities
of mechanical systems possesses important theoretical
and practical significance. The well known Noether sym-
metry has broad applications in mathematics, dynamics,
and physics [1-7], it always can lead to conserved quan-
tities. In fact, it is also named variational symmetry [3].
Besides the Noether symmetry, there are the Lie symme-
try, the Mei symmetry, and so on [8-18]. Above symme-
tries are all basing on the Lie continuous transformation
group. In 1997, Galiullin et al. [19] discussed the confor-
mal invariance of Birkhoff system and deduced Noether
conserved quantities from conformal invariance. Mei et
al. [20] extended the conformal invariance to generalized
Birkhoff equations and gave the Noether conserved quan-
tities. The key question to the conformal invariance of
dynamics is to find out the conformal factor. Considera-
ble progress has made over past years in the application
of conformal invariance to mechanical systems [21-26].
However, the application of conformal invariance to thin
elastic rod has never been investigated.

The thin elastic rod model is adopted to describe the
large deformation questions [27, 28|, especially the DNA
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supercoil [29, 30]. It has been applied to model the con-
figuration and the stability of super-helically constrained
DNA [31-36]. Because of the special slender and super-
deformation characteristics of the elastic rod model, its
equation of motion is strongly nonlinear, which makes
its solution difficult to be found. However, the symme-
try under the Lie group transformation has its inherent
applicability in classifying and reducing differential equa-
tions as well as in finding out conservation laws. So ap-
plying the symmetry to the elastic rod and finding out
its conserved quantities via the symmetry analysis will
be helpful for its research. Coleman et al. [37] introdu-
ced the first integrals and the variational principle for the
rod dynamics. Maddocks et al. [38] gave vector integrals
of motion for the rod dynamics and mentioned the cor-
responding symmetry transformation, but they did not
give further discussion about symmetries. Fu et al. [39]
studied the Noether symmetry of a superlong elastic rod
in the Hamilton form. Jung et al. [40] studied a discrete
method for special Cosserat elastic rod statics and gave
the related Noether theorem. Xue et al. [41] studied the
the conserved quantities in general theorems of elastic rod
dynamics. In Refs. [42, 43] the authors studied the Mei
symmetry and conserved quantities of Kirchhoff elastic
rod statics and Noether theorem of Cosserat elastic rod
dynamics. In Ref. [44] the authors studied the conformal
invariance of Mei symmetry for thin elastic rod.

In the present paper, we study the conformal invari-
ance of the Lagrange equation of thin elastic rod. We
first describe the basic definitions of rod and give the La-
grange equation of elastic rod. Secondly, basing on the
Lie point transformation group, we give the definition of
conformal invariance of elastic rod and the criterion of
necessary and sufficient condition that conformal inva-
riance will be the Lie symmetry. Thirdly, we give the
proposition that conformal invariance leads to conserved
quantities. Finally, we take the twisted rod as example
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to illustrate the application of the results. The conser-
ved quantities obtained in this paper can be helpful in
the numerical simulation for DNA mechanics.

2. Lagrange equation of elastic rod

Consider an inextensible thin elastic rod of length [
with non-circular cross-section. Suppose the thin elastic
rod is homogeneous and isotropic in mechanical proper-
ties along its length, and obeys linearly elastic constitu-
tive relation. It is also assumed that no external force of
torque is imposed on the rod except the two ends, i.e.,
the free elastic rod. Based on the Kirchhoff analogy the
rod can be discretized into motion trajectory of the cross-
section that moves along the center line of elastic rod in
unit speed. The configuration of the cross-section can be
described by the position of centroid which can be defined
by the position vector, R(s), where s is arc coordinate,
and the attitude relative to centroid which can be defined
by the Euler angles (¢(s),6(s), ¢(s)). In order to locate
the configuration of the elastic rod, we establish the iner-
tial coordinate system Ozyz with a fixed space origin O,
and a principle coordinate system Oz*y*z* with a cen-
troid O* of cross-section. A space-fixed right-handed ort-
honormal frame (e, ey, e.) can be introduced for the in-
ertial coordinate system. A body-fixed right-handed ort-
honormal frame (dy, ds,d3) is chosen for principle coor-
dinate system. The deformation geometric equation of
center line of elastic rod satisfies

R =ds, (1)
where the prime represents derivative with respect to arc
coordinate s. Equation (1) denotes vector ds in the di-
rection of the local tangent of the neutral axis of elastic
rod.

The change rate of attitude of cross-section relative
to arc coordinate is called curvature-twisting vector, i.e.
ws. Its components on the principle coordinate system
are ws = wi(s)dy + wa(s)ds + ws(s)ds and has relation
with the Euler angles as

wy = v’ sinfsin @ + 6 cos o,

wy = 1’ sinf cos ¢ — 0’ sin o,

w3 =1 cosh+ . (2)
The physical mean of curvature-twisting vector is the an-
gular velocity of cross-section relative to inertial coordi-
nate system when it moves along the center line of elastic
rod in unit speed.

In fact, Eq. (1) is nonholonomic constraint, so the
freedom degree of cross-section is three. Because it does
not need external constraint force, so it is a pseudo-
nonholonomic constraint [45]. We choose the three Eu-
ler angles as independent variables to confirm the con-
figuration of cross-section. The linear constitutive re-
lation is taken in present paper. Expressing the Euler
angles as generalized coordinates in analytical mechanics
q1 =1,q2 = 0,93 = ¢, and the ¢} denotes the derivative
of the generalized coordinate to the arc coordinate and
is named the generalized velocity, qé’ denotes the second

derivative of the generalized coordinate to arc coordinate
and is named the generalized acceleration, neglecting the
active force along the arc coordinate, we can get the La-
grange equation of elastic rod from the differential vari-
ational principle

dor or G .

a0, ag; —l—mq; =0 (j=1,2,3), (3)
where I' is potential energy density function and is defi-
ned by:

r=7T7-yv, (4)
where T is potential energy density function of strain,
and V = —F - e3. By the Kirchhoff dynamic analogy, I
can be regarded as Lagrangian function density of elas-
tic rod, if T' can be regarded as kinetic energy and V' as
potential energy, and F' is internal force vector on the

cross-section. mﬁ is amount to active torque which may

be seemed as norjl—potential generalized force. It should
note that the arc coordinate variable is analogy to, by
the Kirchhoff dynamic analogy, the time variable, so the
movement of cross-section along the arc coordinate can
be described by the Lagrange Eq. (4). From Eq. (4) we
can have

Fj = Ajk(&q)q;c/ +Bj(37ql) =0 (]7k = 17273)7 (5)

o &*r 9 r 8*r  ar
where Aj, = GrTR B; = o om q; + 9q0t ~ oa. Sup-

. . . 2
pose the system is nonsingular, ie., D = det(ag,iapq,),
94y,

then all the generalized accelerations can be solved from
Eq. (4) in the form
M, (O o’r 0’r
;/ = ]k a0 ! - / /Q_; + mgi ) (6)
D \9dqx 0q 0t 0q,0q; k
where Mj, are co-factors of the matrix element %.
1k94;
Equation (6) can be further written as

¢ = aj(s,45,4;), J=1,2,3. (7)
3. Conformal invariance of the Lagrange
equation of elastic rod

In order to get the conform invariance of the Lagrange
equation of elastic rod, we need to explore the transfor-
mation sets of independent or non-independent variables
corresponding to Egs. (3) or (5). Considering the symme-
try of Eq. (5), we introduce a one-parameter infinitesimal
Lie point transformation group in space (s, g;):

s* :s+€§0(s,q), q; :qj+€£j($7q)a
j = 17 23 33 (8)
where ¢ is infinitesimal parameter, &(s,q),&;(s,q) are
infinitesimal transformation generators. It has infinitesi-
mal generator vector

0 0
©_¢9 , .90
X 50 88 + EJ aqj ) (9)

which is the operator for the infinitesimal generator of
the one-parameter Lie group of transformations (9) in
space (s,q). The first prolongation of the infinitesimal
generator vector is
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The second prolongation of the infinitesimal generator
vector is

x@ = x@ 4 ( 2 Nfo ]50)8 //7 (11)

XM = (10)

which defines a first or second extended one-parameter
Lie group of transformation in space (t,q,q) or space
(t,q,q,q) by partial derivatives.

Definition 1. For elastic rod in the Lagrange form
(3), if there exist a nonsingular matrix I1! satisfying

XO(Fy) = 1}(Fy), j.1=1,2,3, (12)
then the Lagrange equation of elastic rod (3) maintains
conform invariance under the single parameter infinitesi-
mal transformations (8).

Equation (12) is the determining equation of conform
invariance of the Lagrange equation of elastic rod (3).
H} are the conformal factors of the system. If the in-
finitesimal generators &y(s, q),&s(s, q) satisfying the de-
termining Eq. (12), then the transformation (8) is called
conformal transformation.

Now the task is to how to find out the infinitesimal
generators &o(s,q),&s(s,q) of conformal transformation
and conformal factor H}. In order to get the confor-
mal factor, one of the methods is that demands of the
Lagrange equation of elastic rod have both conformal in-
variance and the Lie symmetry simultaneously under the
infinitesimal transformations.

Proposition 1. For the Lagrange equation of elastic
rod (3), if the generators (s, q),&s(s, q) of the infinitesi-
mal transformations (8) satisfy the determining equation
(12), and the exists a nonsingular matrix A} satisfying
the following condition:

X?(Fj) — X*(F))|pj—0 = AjFy, j,1=1,2,3, (13)
then the necessary and sufficient condition that the con-
formal invariance would be the Lie symmetry of system
(3) is

= A (14)

Proof: If the Lagrange equation of elastic rod (3) has
the Lie symmetry, that is

X (F)| 1m0 =0, (15)
we can deduce the relation HJk /1’~C

On the other hand, if the Lagrange equation of elastic
rod (3) maintain conformal invariance, that is the deter-
mining Eq. (12) is verified, then we can get the system
(3) is also the Lie symmetry from relation IIf = A

Calculating the difference of

X2(Fy) — X*(Ey)|ry=o0, (16)
we can get the conformal factor of conformal invariance
of system (3). Expanding Eq. (16) and making use of the
relation

qf —oap = AR k1=1,2,3, (17)
we can get the difference

X*(Fj) = X*(Fj)|ry=0 = B} Fy, (18)
where

1 O 08\ 4ri oc1 (980 | 4 S0

B; = Ajk <5q qT@qT>A 25j(8 + T@qr>
+Xx0 (Ajk)Alch 7,k =1,2,3. (19)

We have the following corollaries to Proposition 1.

Corollary 1. Under the infinitesimal group trans-
formations (8), if the Lagrange equation of elastic rod
(3) maintain both conformal invariance and Lie symme-
try, then the conformal factor should be in the form of
Eq. (19).

Corollary 2. If the Lagrange equation of elastic rod
(3) can be expressed in the standard form

Fj Eq_;'liaj(quvq/) :05 ] = 172a37 (20)
then the necessary and sufficient condition that the con-

formal invariance would be the Lie symmetry of system
(3) is the conformal factor in the form

0 o .
1= aZJ 26! 8—21, =123 (21)
From the standard form (20), we can obtain Ag; = O,
Bj(s,q,q9) = «,(s,q,q¢') in Eq. (5). So we can get
Eq. (21) from Eq. (19).

4. Conformal invariance and conserved
quantities of the Lagrange equation of elastic rod

As we know, there may exist conserved quantities cor-
responding to a symmetry. The conformal invariance can
also lead to conserved quantities under certain limitation.

Proposition 2. If the infinitesimal generators
&0(s,q),n;(s,q)) satisfy the conformal factor (19), and
there exists a gauge function Gn (s, q,q’) satisfying fol-
lowing structure equations, which are the sufficient and
necessary conditions to deduce the Noether conserved
quantities

Ié+ XU +mg (i — i) + Gy =0, (22)
then the conformal invariance of the Lagrange equation

of elastic rod (3) can lead to the conserved quantities in
the following form:

oL
In=T% + o] (n;
The course of proof of proposition 2 can be referred in
Ref. [1].

— ¢j&) + Gn = const. (23)

5. Application of conformal invariance
to thin elastic rod

The potential energy density function in the generali-
zed coordinate form for the circular cross-section of thin
elastic rod is

I' =1 (qjcosqs + Q3)2 — Fcosqs. (24)
The non-potential generalized forces are
mg’ = 0. (25)

The differential equations of motion of the system are

Fy = ¢ cos® g + ¢4 cos® ga + 2q/ ¢ sin ga cos go

—q5q3singa = 0,
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Fy = (¢})*sin gy cos g2 + ¢} ¢h singo + Fsingy = 0,

F3 =qjcosqa + g5 = 0. (26)
Taking the second prolongation of the infinitesimal ge-
nerator vector to Eq. (26), we can get the determining
equations of the Lie symmetry of system (26):

0y cos? qa + 1% cos ga — 21} b sin gz cos g2
—1; sin g2 (24 cos g2 + q5) + &0 (¢} cos g2 — ¢5) cos g2
—&0(24Y + 244 + 34} q5 singa) cos g2
—2&0,qbq5 sin g2 — m2(2q] cos g2 — ¢4 ) sin g,
—12q1gh(cos® g2 — sin® g2) — 1124545 cos g2 = 0,
71 (2¢) cos gz + ¢3) sin g + 155 sin qa
—&0(q1)? sin gz cos ga — 2654} ¢ sin ga
+12(q})? (cos? gz — sin? go)
+12(q15 + F) cos g2 = 0,
11 cos g2 + 15 — §o(q; cos g2 — ¢3)

—1)2q; singa = 0, (27)
when the infinitesimal generators taking the value of
§o=1,m = —q2,m2 = 0,13 = sin gy, (28)

Egs. (27) are verified, that is to say, generators (28) are
the Lie symmetrical. We can get the conformal factor
from (19) or (21) as

0 -1 0
1
In =10 0 01, (29)
0 cosgs O

so the determining equation of conformal invariance of
system (26) is

0 -1 0
F F
x2( " ")=lo0o 0o o " (30)
F2 F2
0 cosga O
When the infinitesimal generators take the value of
50 = 1) m = 17 T2 = Oa n3 = 17 (31)

Eq. (27) is satisfied. However, because the conformal
factor corresponding to generators (31) is null matrix, so
the generators (31) do not satisfy conformal invariance.
We can conclude again that the generators of the Lie
symmetry to be conformal invariance have to satisfy the
condition (13).

Taking the generators (28) into structure equation
(22), we can work out the gauge function

G N = const, (32)
so we can get the conserved quantities corresponding

to conformal invariance of Lagrange equation of elastic
rod as

In = $C(q; cos gz + g5)*
—C(g2 + a1)(d) cos® g2 + g5 cos g2)
+C(q} cos g2 + ¢5) (sin g2 — g3)
—F cosqs + Gy = const. (33)

For infinitesimal generators (31), we can get conserved
quantities deduced from the Lie symmetry of system

In = 1C(¢} cos g2 + ¢5)?

~C(1+ q;)(d} cos® g2 + g cos g2)

+C(q] cos gz + q4)(1 — q5) — F cos ga = const. (34)
They are two types of new conserved quantities for su-
perthin elastic rod which are never got in the past.

6. Conclusion

The superthin elastic rod models have broad applicati-
ons in engineering and biology. The differential equations
of motion of superthin elastic rod are strongly nonlinear
for its large deformation. This paper utilizes the analyti-
cal mechanics methods to construct the Lagrange equa-
tions of rod, and applies the conformal invariance to thin
elastic rod Lagrange mechanics, and gives the correspon-
ding conserved quantities to this symmetry.

The definition of conformal invariance of elastic rod is
given. In order to find the conformal factor, the propo-
sition 1 and two corollaries are proposed. They are also
the necessary and sufficient condition that the Lie sym-
metry would be conformal invariance of the system. The
proposition 2 gives conserved quantities of the conformal
invariance of loaded rod. We take the rod with twist rate
as an example to illustrate the application of the results
got in this paper. The case of general elastic rod needs
further study.
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