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Attempt has been made to construct the solitary waves and shock wave solutions or domain walls (in higher

dimension) for various Boussinesq equations. The method of undetermined coefficients have been used to explore
the exact analytical solitary waves and shock wave solutions in terms of bell-shaped sechp function and kink-
shaped tanhp function for the considered equations. The Boussinesq equation in the (1 + 1)-dimensional, the
(2+1)-dimensional and the (3+1)-dimensional equations are studied and the parametric constraint conditions and
uniqueness in view of both solitary waves and shock wave solutions are determined. Such solutions can be valuable
and desirable for explaining some nonlinear physical phenomena in nonlinear science described by the Boussinesq
equations. The effect of the varying parameters on the development of solitary waves and shock wave solutions
have been demonstrated by direct numerical simulation technique.
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1. Introduction

The investigation of soliton solutions to nonlinear evo-
lution equations (NLEEs) plays a pivotal role in the di-
versified nonlinear physical phenomena. The various so-
litary wave phenomena are observed in plasmas physics,
fluid dynamics, fiber-optic communications, nonlinear
photonic crystals, chemical physics, the Bose–Einstein
condensates, nuclear physics, crystal lattice vibrations,
biological systems, DNA molecule and energy transport
in proteins [1, 2]. The observations of solitons in va-
rious physical systems uncover many exciting problems
from both central and applied points of view. Solitary
waves are wave packets which travel in nonlinear disper-
sive media and retain their stable wave forms due to the
exact dynamical counterbalancing between the nonlinear
and the dispersive effects. The basic strategies one may
adopt to predict, control and quantify the basic featu-
res of a physical system is to model the system in terms
of mathematical equations, which are usually nonlinear
and then find exact analytic solutions of such nonlinear
physical model equations using some suitable methods.
The exact solutions, if exist, of those nonlinear equati-
ons facilitate us to well understand the mechanism of
the complicated dynamical processes exhibited by these
nonlinear evolution equations.

This paper emphases on integrability aspect of the
Boussinesq equations to retrieve solitary wave solution,
it must be noted that there are several other approa-
ches to obtain solitary wave solutions and other forms of
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waves such as cnoidal waves, snoidal waves and singu-
lar solitons. In recent years, many powerful and efficient
integration techniques have been proposed to construct
exact travelling wave solutions of NLEEs [1–27].

The dynamics of shallow water waves that are realized
in various places like lakes, sea beaches and rivers are
governed by the Boussinesq equation. The Korteweg–
de Vries equation that models shallow water waves is
certainly very well known. Nevertheless, the Boussinesq
equation provides a much superior approximation to such
waves. Among the NLEEs, the Boussinesq equation has
been resulting in order to describe the long waves trans-
mitting on the surface of shallow water [28–31]. The
Boussinesq-like equations also appear in many physical
phenomena, such as electromagnetic waves in nonlinear
dielectrics, one-dimensional nonlinear lattice waves, ion
sound waves in plasma, and oscillations in a nonlinear
string. The Boussinesq approximation is an valid ap-
proximation in hydrodynamics for weakly nonlinear and
fairly long water waves. In this paper, we emphasized on
obtaining the solitary waves and shock wave solutions of
the Boussinesq equations. For both cases, the necessary
constraint conditions are retrieved.

In this work, we will examine the (1 + 1)-dimensional
Boussinesq equation [28]:

qtt − qxx + α(q2)xx − λqxxxx = 0, α 6= 0, (1)
which is completely integrable and possesses an infinite
number of conservation laws, consequently, permits mul-
tiple soliton solutions. It was presented by Boussinesq to
pronounce the two-dimensional propagation of shallow-
water waves with small amplitude as they propagate at
a uniform speed in a canal of constant depth.
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Many variants of the Boussinesq equation were infer-
red to describe physical phenomena [32–35]. In the pre-
sent work we will extend our study to the two higher
dimensional Boussinesq equations, namely, the (2 + 1)-
dimensional Boussinesq equation [29, 30, 36, 37]:

qtt − aqxx − bqyy + α(q2)xx − λqxxxx = 0,

α 6= 0, (2)
and the (3 + 1)-dimensional Boussinesq equation [31]:

qtt − aqxx − bqyy − cqzz + α(q2)xx − λqxxxx = 0,

α 6= 0. (3)
The equations with λ = ±1 are well-recognized as the
good and bad Boussinesq equations in literature for ±
sign, respectively. Equation (2) describes the propaga-
tion of gravity waves on the surface of water and in spe-
cific the head-on collision of oblique waves [29]. Equati-
ons (2) and (3) combine the two-way propagation of the
classical Boussinesq equation with the weak dependence
on a second variable y and two other new spatial variables
y and z, respectively.

This paper is organized as follows. In Sects. 2, 3 and 4
we will address the analytical solitary waves and shock
wave solutions of (1+1), (2+1) and (3+1)-dimensional
Boussinesq equations, respectively. In Sect. 5, we will
show the effect of the varying parameters on the evolu-
tion of solitary waves and shock wave solutions by direct
numerical simulation technique. Section 6 will reveal our
conclusions.

2. The (1 + 1)-dimensional Boussinesq equation

In this section, we will develop the analytical solitary
waves and shock wave solutions of (1 + 1)-dimensional
Boussinesq equation by method of undetermined coeffi-
cients.

2.1. The solitary wave solution

We instigate our study by analysing the (1 + 1)-
dimensional Boussinesq equation which is given as

qtt − qxx + α(q2)xx − λqxxxx = 0, (4)
where α and λ are constants. The solitary wave is re-
garded as a localized intensity peak above a continuous
wave background. In order to find the solitary wave so-
lution for Eq. (4), we practice the following solitary wave
form [14–24]

q(x, t) = Asechp{η(x− vt)}, (5)
where A, η and v are respectively, the amplitude, the in-
verse width and the velocity of the soliton that will be
determined as functions of the model coefficients α and λ.
The unknown index p, where p > 0, will be determined
during the course of study of the solution of Eq. (4).

Substituting Eq. (5) into Eq. (4), we obtain
Ap2η2v2 sechpθ − p(p+ 1)Aη2v2 sechp+2θ

−Ap2η2 sechpθ + p(p+ 1)Aη2 sechp+2θ

+α[4A2η2p2 sech2pθ − 2p(2p+ 1)A2η2 sech2p+2θ]

−λ[Ap4η4 sechpθ

+2Aη4p(p+ 1)(p2 + 2p+ 2)sechp+2θ

−Aη4p(p+ 1)(p+ 2)(p+ 3)sechp+4θ] = 0, (6)
where θ = η(x− vt).

On equating the highest exponents of sechp+4θ and
sech2p+2θ functions in Eq. (6), one gets

2p+ 2 = p+ 4, (7)
which employ

p = 2. (8)
From Eq. (6) setting the coefficients of the same expo-
nent of sechp+jθ, to zero where j = 0, 2, 4, since these
are linearly independent functions, gives a set of alge-
braic equations:

v2 − 4λη2 − 1 = 0, (9)

6(1− v2) + 16αA+ 120λAη2 = 0, (10)

−20αA− 120λAη2 = 0. (11)
From Eq. (9), we obtain

v = ±
√
4λη2 + 1 (12)

Solving Eq. (11) using Eq. (10), we obtain

A = 3
2

(1− v2)
α

=
−6λη2

α
. (13)

Now Eq. (13) imposes the constraint conditions on the
parameters as v 6= 1 and αλ < 0 for the soliton to exist.
Equation (12) shows that velocity v is dependent on λ
and η and ± sign in the soliton velocity shows the chi-
rality of solitary wave solution. The soliton can move in
either +x or −x direction, respectively. Finally, we get
the solitary wave solution for the (1+1)-dimensional Bou-
ssinesq equation, when the above expressions of A and v
given by Eqs. (12) and (13) are substituted in Eq. (5) as

q(x, t) =
−6λη2

α
sech2{η(x− vt)}. (14)

where the relation between amplitude A and the inverse
width η of the soliton is depicted by Eq. (13). The soliton
velocity v is given by Eq. (12) and the constraint relation
assures the existence of the soliton.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

t

Fig. 1. Profile of the solitary wave solution (14) for
parameter values α = −1, η = 1, v = 2.2360, λ = 1.

Figure 1 shows the numerical simulation of the solution
with the choice of parameters as α = −1, η = 1, v =
2.2360, λ = 1. This prescribes set of parameter values,
which, satisfying the constraint relations, are selected in
order to carry out numerical simulation.

2.2. The shock waves solution
The shock wave is characterized by a localized drop

of intensity related to a more intense continuous wave
background. The focus will be on searching the shock
wave solution to Eq. (4). In order to seek for shock wave
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solution to Eq. (4), the preliminary assumption is
q(x, t) = A tanhp{η(x− vt)}, (15)

where A, η are free unknown parameters and v is the
velocity of the soliton that will be determined as functi-
ons of the model coefficients α and λ. Additionally, the
values of the unknown exponents p will fall out during
the course of derivation of the soliton solution.

Substituting Eq. (15) into Eq. (4), we get
Apv2η2[(p− 1) tanhp−2 θ

−2 tanhp θ + (p+ 1) tanhp+2 θ]

−Apη2[(p− 1) tanhp−2 θ

−2 tanhp θ + (p+ 1) tanhp+2 θ]

+2αA2pη2[(2p− 1) tanh2p−2 θ

+(2p+ 1) tanh2p+2 θ − 4p tanh2p θ]

+2A2pη21 [tanh
2p+2 θ − tanh2p−2 θ]

−λAη4p[(p+ 1)(p+ 2)(p+ 3) tanhp+4 θ

−(p+ 1)(3p2 + 3p+ 2) tanhp+2 θ

+(p− 1)(3p2 − 3p+ 2) tanhp θ

−(p− 1)(p− 2)(p− 3) tanhp−2 θ

−(p+ 1)(p+ 2)(p+ 3) tanhp+2 θ

+(p+ 1)(3p2 + 3p+ 2) tanhp θ

−(p− 1)(3p2 − 3p+ 2) tanhp−2 θ

+(p− 1)(p− 2)(p− 3) tanhp−4 θ] = 0, (16)
where θ = η(x− vt).

By equating the highest exponents of tanhp+4 θ and
tanh2p+2 θ functions in Eq. (16), one obtains

2p+ 2 = p+ 4, (17)
which leads to

p = 2. (18)
Collecting the coefficients of the same exponent of
tanhp θ, tanhp+2 θ, tanh2p−2 θ, tanhp+4 θ and tanh2p+2 θ,
respectively, where each coefficient has to vanish, we
obtain the following system of algebraic equations:

v2 − 1 + 8λη2 = 0, (19)

1− v2 + 3αA+ 4λη2 − 30λη2 = 0, (20)

v2 − 1− 16
3
αA+ 40λη2 = 0, (21)

αA− 6λη2 = 0. (22)
It is to be noted that the coefficients of the linearly in-
dependent functions tanhp−4(θ) in Eq. (16) are sponta-
neously zero for index p = 2.

From Eq. (19), the soliton velocity is determined as

v = ±
√
1− 8λη2. (23)

Equation (22), leads to

A =
6λη2

α
. (24)

Note that by substituting the value of v from Eq. (23)
in Eqs. (20) and (21) results in the same expression of
free parameter A as given by Eq. (24). Hence these two
equations can be understood as integrability conditions
for the shock wave solution to exist. Also the free para-

meter A of shock wave solution is affected by the presence
of other soliton parameters α and λ. Finally we get the
shock wave solution for the (1 + 1)-dimensional Boussi-
nesq equation, when the above expressions of A and v
given by Eqs. (23) and (24) are substituted in Eq. (15)
as

q(x, t) =
6λη2

α
tanh2{η(x− vt)}. (25)
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Fig. 2. Profile of the shock wave solution (25) for pa-
rameter values α = 1, η = 0.1, v = 0.44, λ = 1.

The only other simple condition that needs to hold for
the shock wave solution to exist is that αλ > 0 which
follows from Eq. (24). From Eqs. (14) and (25), we
observed that the existence condition for solitary wave
and shock wave solutions are opposite to each other.
Figure 2 shows the evolution of the shock wave solu-
tion (25) for different model coefficients which satisfy
the constraint condition. The choice of parameter for
the numerical simulation of the shock wave solution is as
α = 1, η = 0.1, v = 0.44, λ = 1.

3. The (2 + 1)-dimensional Boussinesq equation

In this section, we will reveal the analytical solitary
wave and shock wave solutions (domain walls) of (2+1)-
dimensional Boussinesq equation.

3.1. The solitary wave solution

In this subsection, we consider the nonlinear (2 + 1)-
dimensional Boussinesq equation

qtt − aqxx − bqyy + α(q2)xx − λqxxxx = 0, (26)
where a, b, α and λ are arbitrary constants with α 6= 0.
This equation would seem to be the prototype for wa-
ves that propagate in opposite direction in (2 + 1)-
dimensions. Different cases of Eq. (26) are studied in
Refs. [29, 30, 36, 37]. When a = b = α = 1, and λ = −3,
Eq. (26) can be used to define the propagation of gra-
vity waves on the water surface whose periodic solutions,
multi-soliton solutions and soliton resonance phenomena
have been established in Refs. [15, 16]. To initiate with,
the hypothesis is given by

q(x, y, t) = Asechp{η1x+ η2y − vt}. (27)
Here in Eq. (27) A, η1, η2, and v are, respectively, the
amplitude, the inverse widths in x, y directions and the
velocity of the wave that will be determined as functions
of the model parameters α and λ. It is to be noted that
in the supposition of the solution structure, the inverse
widths of the soliton in the x- and y-directions are taken
to be different, namely η1 6= η2 in common. This makes
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the structure of the soliton solution more generalized.
The exponent p will be also determined.

Inserting Eq. (27) into Eq. (26), yields
Ap2v2 sechpθ − p(p+ 1)Av2 sechp+2θ

−Ap2(aη21 + bη22)sech
pθ

+p(p+ 1)Av2(aη21 + bη22)sech
p+2θ

+α[4A2η21p
2 sech2pθ − 2p(2p+ 1)A2η21 sech

2p+2θ]

−λ[Ap4η41 sechpθ

−2Aη41p(p+ 1)(p2 + 2p+ 2)sechp+2θ

+Aη41p(p+ 1)(p+ 2)(p+ 3)sechp+4θ] = 0, (28)
where θ = η(x− vt).
Equating the highest exponents of sechp+4θ and
sech2p+2θ functions in Eq. (28), we get

2p+ 2 = p+ 4, (29)
which yields

p = 2. (30)
Now, noting that the functions sechpθ, sechp+2θ,
sechp+4θ, and sech2p+2θ are linearly independent, set-
ting their respective coefficients in Eq. (28) to zero yields
the following equations:

v2 − 4λη21 − (aη21 + bη22) = 0, (31)

6v2(aη21 + bη22 − 1) + 16αAη21 + 120λη41 = 0, (32)

−20αAη21 − 120λη41 = 0. (33)
From Eq. (31), we get

v = ±
√
4λη41 + bη22 + aη21 . (34)

Using Eq. (33) into Eq. (32) , the following value of A is
obtained:

A =
3v2

2

(aη21 + bη22 − 1)

αη21
. (35)

Thus, the solitary wave solution of the the (2 + 1)-
dimensional Boussinesq equation is given by

q(x, y, t) =

3v2

2

(aη21 + bη22 − 1)

αη21
sech2{η1x+ η2y − vt}. (36)

where the amplitude A is related to the inverse widths
η1 and η2 as given by (35) and the velocity v is given
by (34). In view of Eq. (35), we clearly see that solitary
wave solution exist provided that αη21 6= 0.
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Fig. 3. Profile of the solitary wave solution (35) for
parameter values a = 1, b = 1, α = 1, η1 = 1, η2 =
1, λ = 1, v = 2.4494, at t = 0.

Figure 3 shows the profile of a soliton solution of the
(2+1)-dimensional Boussinesq equation. The parameter

values chosen are a = 1, b = 1, α = 1, η1 = 1, η2 = 1, λ =
1, v = 2.4494, at t = 0.

3.2. The domain wall solution
In dimensions higher than (1 + 1) the shock waves or

topological solitons are called “domain walls”. Now we
are interested in finding the domain walls solution for
considered (2+1)-dimensional Boussinesq equation. To
do this, we consider the solution of the form

q(x, y, t) = A tanhp θ, (37)
where θ = {η1x+ η2y− vt} represents the shape of pulse
and A, η1, η2 are unknown free parameters and the v is
the velocity of the soliton that will be find out. The
exponent p is also unknown.

Substituting Eq. (37) into Eq. (26), we get
Ap2v2[tanhp−2 θ − 2 tanhp θ + tanhp+2 θ]

+Apv2[tanhp+2 θ − tanhp−2 θ]

−pA(aη21 + bη22){(p− 1) tanhp−2 θ

−2p tanhp θ + (p+ 1) tanhp+2 θ}
+α[4A2p2η21{tanh

2p−2 θ + tanh2p+2 θ − 2 tanh2p θ}
+2A2pη21{tanh

2p+2 θ − tanh2p−2 θ}]
−λ[pAη41{(p− 1)(p− 2)(p− 3) tanhp−4 θ

−4(p− 1)(p2 − 2p+ 2) tanhp−2 θ

+2p(3p2 + 5) tanhp θ

−4(p+ 1)(p2 + 2p+ 2) tanhp+2 θ

+(p+ 1)(p+ 2)(p+ 3) tanhp+4 θ}] = 0. (38)
From Eq. (38), equating the highest exponents of
tanhp+4 θ and tanh2p+2 θ functions, we have

2p+ 2 = p+ 4, (39)
which provides

p = 2. (40)
Collecting the coefficients of the same exponent
of tanhp θ, tanhp+2 θ, tanh2p−2 θ, tanhp+4 θ, and
tanh2p+2 θ, respectively, where each coefficient has to va-
nish, we obtain the following system of algebraic equati-
ons:

v2 − (aη21 + bη22) + 8λη41 = 0, (41)

−v2 + (aη21 + bη22)− 3
2
αAη21 − 17λη41 = 0, (42)

v2 − (aη21 + bη22)− 16
3
αAη21 + 40λη41 = 0, (43)

αA+ 6λη21 = 0. (44)
From Eq. (41), one gets

v = ±
√
bη22 + aη21 − 8λη41 . (45)

Now solving Eq. (44), we get

A =
−6λη21
α

. (46)

From Eq. (46), we clearly see that this solution exists
provided αλ < 0 and the free parameter A only depends
on η1, independent of η2 and η3. Note that by substitu-
ting the value of v from Eq. (45) in Eqs. (42) and (43) re-
sults in the same expression of A as given by (46). Hence
these equations can be understood as integrability con-
dition for the domain walls. We would like to note that
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for the ± sign in the expression (45), the domain walls
either move in left (for – sign) or right (for + sign) hand
directions, respectively. Thus, the domain walls solution
of the (2+1)-dimensional Boussinesq equation is given by

q(x, y, t) =
−6λη21
α

tanh2{η1x+ η2y − vt)}, (47)
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Fig. 4. Profile of the domain wall solution (47) for pa-
rameter values α = −1, η1 = 1, η2 = 1, t = 0, λ = 1.
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Fig. 5. Profile of the soliton solution for parameter va-
lues a = b = c = 1, α = 1, η1 = 1, η2 = 1, η3 = 1, v =
2.6457, λ = 1.
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Fig. 6. Profile of the domain wall solution for parame-
ter values α = −1, η1 = 1, η2 = 1, η3 = 1, a = b = 4, c =
1, v = 1, λ = 1.

where the velocity of the domain walls is given by (45)
and the free parameters relation of the domain walls is
specified by (46). Figure 4 shows the profile of the dom-
ain wall solution of the (2+1)-dimensional Boussinesq
equation. The parameter values chosen are α = −1, η1 =
1, η2 = 1, λ = 1 at t = 0.

4. The (3 + 1)-dimensional Boussinesq equation

In this section, we will utilize the method of undeter-
mined coefficients to solve the (3 + 1)-dimensional Bou-
ssinesq equation.

4.1. The solitary wave solution
In this subsection, the search is going for finding the

solitary wave solution, for the (3 + 1)-dimensional Bou-
ssinesq equation which is considered as

qtt − aqxx − bqyy − cqzz + α(q2)xx − λqxxxx = 0, (48)
which can be generalized from Eq. (26), with c as the

coefficient of dissipation term in the z direction. We know
that the (3+1)-dimensional Boussinesq equation does not
have the three-soliton solution and this implies that none
of the (3+1)-dimensional Boussinesq equations should be
integrable, and partially clarify why it does not pass the
Painlevé integrability test.

In order to look for solitary wave solution to Eq. (48),
we exercise the following wave form

q(x, y, z, t) = Asechpθ, (49)
where θ = {η1x+ η2y+ η3z− vt}, where in Eq. (49), the
parameters A, η1, η2, η3 are known as the amplitude and
soliton inverse widths in x, y and z directions respectively
for soliton and v is the velocity of the soliton. Note that
in the sense of extracting the solitary wave solution for
Eq. (48), one needs to have p > 0 for soliton to exist.

Substituting Eq. (49) into Eq. (48), leads to
Ap2v2 sechpθ − p(p+ 1)Av2 sechp+2θ

−Ap2(aη21 + bη22 + cη23)sech
pθ

+p(p+ 1)Av2(aη21 + bη22)sech
p+2θ

+α[4A2η21p
2 sech2pθ

−2p(2p+ 1)A2η21 sech
2p+2θ]

−λ[Ap4η41 sechpθ

−2Aη41p(p+ 1)(p2 + 2p+ 2)sechp+2θ

+Aη41p(p+ 1)(p+ 2)(p+ 3)sechp+4θ] = 0. (50)
From Eq. (50) equating the exponents of sechp+4θ and
sech2p+2θ functions, we set

2p+ 2 = p+ 4, (51)
so that

p = 2. (52)
By setting the corresponding coefficients of sechpθ,
sechp+2θ, sechp+4θ and sech2p+2θ to zero, we obtain the
following system of algebraic equations:

v2 − 4λη21 − (aη21 + bη22) = 0, (53)

6v2(aη21 + bη22 + cη23 − 1) + 16αAη21
+120λη41 = 0, (54)

−20αAη21 − 120λη41 = 0. (55)
From Eq. (53), we have

v = ±
√

4λη41 + aη21 + bη22 + cη23 . (56)
Using Eq. (55) into Eq. (54), we obtain

A =
3v2

2

(aη21 + bη22 + cη23 − 1)

αη21
. (57)

The latter shows that solitons exist for αη21 6= 0. Thus,
finally, soliton solution to (3+1)-dimensional Boussinesq
equation given by Eq. (48) with constant coefficients is

q(x, y, z, t) =
3v2

2

(aη21 + bη22 + cη23 − 1)

αη21×sech2{η1x+ η2y + η3z − vt}, (58)
where velocity of soliton is given by Eq. (56) and am-
plitude A of the soliton is seen in Eq. (57). It is ne-
cessary to observe that the amplitude A is dependent
on the soliton inverse widths η1, η2, η3 and velocity
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of the soliton v. Therefore, the choice of model pa-
rameters a, b, c, α and λ directly affects the ampli-
tude of shock wave solution. Figure 5 represents the
3-dimensional surface plots of the solitary wave solution
(58) for different parameter values given as a = b = c = 1,
α = 1, η1 = 1, η2 = 1, η3 = 1, v = 2.6457, λ = 1.

4.2. The domain wall solution

In order to construct domain wall solutions for
Eq. (48), we assume, the solution of the form

q(x, y, z, t) = A tanhp θ (59)
and choose now a suitable wave form with (3+1) depen-
dent variables of the form θ = {η1x+η2y+η3z−vt}. For
domain walls, the parameters A, η1, η2, η3 are indeed free
domain wall parameters while v still represents the velo-
city of the domain walls, that will be determined. The
exponent p is also unknown and determined during the
fall out of domain wall derivation. Substituting Eq. (59)
into Eq. (48), we get

Ap2v2[tanhp−2 θ − 2 tanhp θ + tanhp+2 θ]

+Apv2[tanhp+2 θ − tanhp−2 θ]

−pA(aη21 + bη22 + cη23){(p− 1) tanhp−2 θ

−2p tanhp θ + (p+ 1) tanhp+2 θ}
+α[4A2p2η21{tanh

2p−2 θ + tanh2p+2 θ − 2 tanh2p θ}
+2A2pη21{tanh

2p+2 θ − tanh2p−2 θ}]
−λ[pAη41{(p− 1)(p− 2)(p− 3) tanhp−4 θ

−4(p− 1)(p2 − 2p+ 2) tanhp−2 θ

+2p(3p2 + 5) tanhp θ

−4(p+ 1)(p2 + 2p+ 2) tanhp+2 θ

+(p+ 1)(p+ 2)(p+ 3) tanhp+4 θ}] = 0, (60)
where θ = η1x+ η2y + η3z − vt.

Thus, for matching the highest exponents of tanhp+4 θ
and tanh2p+2 θ functions in Eq. (60), one gets

2p+ 2 = p+ 4, (61)
which yields

p = 2. (62)
Collecting the coefficients of the same exponent of
tanhp θ, tanhp+2 θ, tanh2p−2 θ, tanhp+4 θ and tanh2p+2 θ,
respectively, where each coefficient has to vanish, we
obtain the following system of algebraic equations:

v2 − (aη21 + bη22 + cη23) + 8λη41 = 0, (63)

−v2 + (aη21 + bη22 + cη23)− 3
2
αAη21 − 17λη41 = 0, (64)

v2 − (aη21 + bη22 + cη23)− 16
3
αAη21 + 40λη41 = 0, (65)

αA+ 6λη21 = 0. (66)
From Eq. (63), one gets

v = ±
√
aη23 + bη22 + cη21 − 8λη41 . (67)

Equation (67) leads to

A =
−6λη21
α

. (68)

Also, substituting the value of v from Eq. (67) in
Eqs. (64) and (65), one gets the same expression of A

as given in (68). From Eqs. (67) and (68), it has been
seen that the velocity of domain wall depends on the free
parameters η1, η2 and η3 of soliton in x, y and z directi-
ons while the free parameter A of domain walls depends
on α, λ and η1. The constraint relation between the
coefficients is given by αλ < 0, which must hold for the
domain walls to exist.

Lastly, we can determine the domain wall solution for
for the (3 + 1)-dimensional Boussinesq equation as

q(x, y, z, t) =
−6λη21
α

tanh2{η1x+ η2y + η3z − vt}, (69)

where the velocity of shock wave is given by Eq. (67) and
free parameter A is given by (68). Note that the for-
mation condition of solitary wave and domain wall pul-
ses are opposite to each other. Figure 6 represents the
3-dimensional surface plots of the domain wall solution
(69) for different parameter values given as α = −1, η1 =
1, η2 = 1, η3 = 1, a = b = 4, c = 1, v = 1, λ = 1.

5. Numerical analysis

The numerical analysis is necessary for seeking the evo-
lution of solitary wave and shock wave solutions. There-
fore we select the direct numerical simulation method for
solving the Boussinesq equation. To study the effect of
parameters on travelling waves, we consider the following
two cases for different values of parameters as:

Case(1): We study the effect of changing the parame-
ter λ, α and η, on evolution of solitary wave (14), namely,
three cases arise:
(i) α = −1, η = 1, λ = 1, 2, 3.
(ii)α = −1,−2,−3, η = 1, λ = 1.
(iii)α = −1, η = 1, 2, 3, λ = 1.

Fig. 7. Profile of the solitary wave solution (14) for
parameter values: (a) α = −1, η = 1, λ = 1, 2, 3 (red,
green, blue), (b) α = −1,−2,−3 (red, green, blue), η =
1, λ = 1, (c) α = −1, η = 1, 2, 3 (red, green, blue),
λ = 1.

Figure 7 shows the effect of parameter change on the
solitary waves (14). From Fig. 7a, we note that with in-
crease in value of λ, there is a corresponding increase in
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Fig. 8. Profile of the shock wave solution (25) for pa-
rameter values: (a) α = 1, η = 1, λ = 1, 2, 3 (red, green,
blue), (b) α = 1, 2, 3 (red, green, blue), η = 1, λ = 1, (c)
α = 1, η = 1, 2, 3 (red, green, blue), λ = 1.

amplitude of the solitary wave while Fig. 7b shows that
with increase in negative value of α, there is a correspon-
ding decrease in amplitude of the solitary wave solution.
Hence the presence of parameters α and λ directly affects
the amplitude of solitons. For constant α and λ, the in-
crease in value of inverse width parameter η will result
in the narrower width of soliton as shown in Fig. 7c.
Case(2): We consider the effect of changing the para-
meter λ, α and η, on evolution of shock wave solution
(25).Generally, three cases arise:
(i) α = 1, η = 1, λ = 1, 2, 3.
(ii) α = 1, 2, 3, η = 1, λ = 1.
(iii) α = 1, η = 1, 2, 3, λ = 1.
In Fig. 8 we show the effect of the parameters change
on waveform of shock wave solution. From Fig. 8a we
conclude that with increase in value of λ, the amplitude
of shock wave increases. From Fig. 8b we note that with
increase in value of α, the amplitude of shock waves de-
creases. Therefore, the variation of parameters α and λ
directly affects the amplitude of shock waves. For con-
stant α and λ, the increase in value of free parameter η
will decrease in the pulse width of shock waves as shown
in Fig. 8c.

6. Conclusions

In this work, one such contemporary method of inte-
grability will be applied to carry out the integration of
various Boussinesq equations. The technique of unde-
termined coefficients will be taken on to integrate such
equations. The formation conditions for the envelope so-
litons and domain walls have also been reported. We also
shown that the method of undetermined coefficients is an
effective and efficient tool for constructing exact soluti-
ons for such type of nonlinear evolution equations. To our
knowledge, these new solutions have not been reported
earlier and they may be of substantial importance for
explaining some special physical phenomena. We trust

that the present solutions may be useful in further nu-
merical investigation and these results are going to be
very significant in future research.
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