Raman Scattering Characterization of Mo$_{x}$W$_{1-x}$S$_2$ Layered Mixed Crystals

M. SIGIRO*

Department of Physics Education, Faculty of Education and Teacher Training, Universitas HKBP Nomensen, Medan 20234, Indonesia

(Received August 31, 2016; in final form January 5, 2017)

A series of Mo$_x$W$_{1-x}$S$_2$ (0 ≤ x ≤ 1) layered mixed crystals was grown by the chemical vapor transport method. A systematic study of these crystals was then conducted using the Raman scattering measurements. The peaks of the two dominant first-order Raman-active modes, A_{1g} and E_{2g}, and of several second-order bands are observed from 150 cm$^{-1}$ to 500 cm$^{-1}$. The peaks corresponding to A_{1g} mode show one-mode type behavior, whereas the peaks of E_{2g} mode demonstrate two-mode type behavior for the entire series. These results can be explained by the atomic displacements of each mode. For A_{1g} mode, only S atoms vibrate, thereby resulting in a one-mode type behavior for the mixed crystals. For E_{2g} mode, metal and S atoms vibrate. The mass difference in the vibrating Mo and W cations causes the two-mode type behavior of E_{2g} mode. In addition, the largest asymmetry and broadening of A_{1g} mode for Mo$_5$W$_{0.5}$S$_2$ is attributed to random alloy scattering.

DOI: 10.12693/APhysPolA.131.259

PACS/topics: Raman-active mode, layered mixed crystal, atomic displacement, chemical-vapor transport method

1. Introduction

Layered semiconductors TX$_2$ are receiving significant interest because of their structural properties. MoS$_2$ is an important member of layered-type transition metal dichalcogenides, which have a VI-group layer-type structure [1] MX$_2$ (or WX$_2$), where M = Mo or W, and X = S or Se. The “layered” structure of MoS$_2$ is formed by a graphene-like hexagonal arrangement of Mo and S atoms stacked together to achieve S–Mo–S sandwiches, which are coordinated in a triangular prismatic fashion. The S–Mo–S sandwiches are bonded together by weak Van der Waals forces [2]. Layered semiconductors are potential candidates in various important technologies, such as solid lubricants [3–5], photovoltaic and polymer solar cells [6–10], and hydrosulphurization catalysts [11]. The possibility of obtaining MoS$_2$ by exfoliation of multilayered MoS$_2$ into single-layered MoS$_2$ nanosheets, followed by a Li-intercalation and exfoliation method [12, 13] allowed the solution-based production and thin-film fabrication of MoS$_2$ sheets, which are applicable in high-performance electronics. In addition, a high in-plane carrier mobility of ≈ 200 cm2 V$^{-1}$ s$^{-1}$ to 500 cm2 V$^{-1}$ s$^{-1}$ and superior mechanical properties of the MoS$_2$ nanosheets have made them promising materials for various applications in electronic devices [14–17]. Given these versatile properties, many researchers have investigated the utilization of MoS$_2$ as a semiconducting channel material for high-performance unipolar or ambipolar field-effect transistors [14, 18–21]. Over the last two decades, several papers concerning the preparation and characterization of Mo$_x$W$_{1-x}$S$_2$ compounds using various methods have been published [22–26]. The X-r structure is a layered-type structure with hexagonal symmetry [22, 23]. The thermal decomposition of thionallate solid solutions (NH$_4$)$_2$Mo$_{1-x}$W$_x$S$_4$ in an inert or hydrogen atmosphere yields Mo$_x$W$_{1-x}$S$_2$ nanotubes and related structures [24–26]. Using piezoreflectance measurements in the vicinity of the direct band edge, the transition energies were found to vary smoothly with the W composition x, thereby indicating that the natures of the direct band edges are similar for the Mo$_x$W$_{1-x}$S$_2$ compounds [23].

In this report, we present a systematic Raman scattering study of a series of Mo$_x$W$_{1-x}$S$_2$ layered mixed crystals grown using chemical-vapor transport method. The peaks of the two dominant first-order Raman-active modes, A_{1g} and E_{2g}, and several second-order (SOR) bands were observed. Polarization-dependent measurements in the backscattering configuration were performed to determine the positions of A_{1g} and E_{2g} modes at different W composition x. The peaks that correspond to A_{1g} mode show one-mode type behavior, whereas the peaks of E_{2g} mode demonstrate two-mode type behavior for the entire series. The composition-dependent behaviors of A_{1g} and E_{2g} modes are discussed.

2. Experimental

Solid solutions of Mo$_x$W$_{1-x}$S$_2$ single crystals were grown using chemical-vapor transport method with Br$_2$ as a transport agent. The total charge used in each growth experiment was approximately 10 g. The W and Mo materials were added in such manner that the W composition x changes with respect to increases of the Mo from 0 to 1 with a composition step size $\Delta x = 0.1$. Prior to crystal growing, the powdered compounds of the series were prepared from the elements (Mo: 99.99%,...
W: 99.95%, and S: 99.999%) by reaction at 1000°C for 10 days in evacuated quartz ampoules, which was sealed at 10^{-6} Torr. The ampoule, which contained Br_2 (≈ 5 mg cm^{-3}), was then placed in a three-zone furnace, and the charge was pre-reacted for 24 h at 800°C with the growth zone at 950°C, thereby preventing the transport of the product. The temperature of the furnace was increased slowly to avoid any possible explosion caused by exothermic reaction between the elements. The furnace was then equilibrated to achieve a constant temperature across the reaction tube, and then programmed over 24 h to produce the temperature gradient at which single-crystal growth occurred. Optimal results were obtained at a temperature gradient of approximately 960°C to 930°C. Single crystalline platelets up to 10×10 mm^2 surface area and 2 mm in thickness were obtained. We do not expect the two solid solutions to be miscible.

The Raman measurements were performed at room temperature using the backscattering configuration on a Renishaw micro-Raman system with 1800 grooves/mm grating (Fig. 1). An optical microscope with a 50× objective was used to focus the laser beam on the sample placed on an X−Y motorized sample stage. A linearly polarized Ar^+ laser beam (514.5 nm excitation line) with a power of ≈ 1.5 mW was focused into a spot size of ≈ 5 µm in diameter. Prior to measurement, the system was calibrated using the 520 cm^{-1} Raman peak of a polycrystalline Si. The time of acquisition of a particular spectral window was optimized for individual sample measurements. Fifty accumulations were performed to obtain a spectrum.

![Fig. 1. Schematic diagram of the setup for Raman spectroscopy system.](image)

3. Results and discussion

Polarization-dependent measurements in the backscattering configuration were performed to determine the position of A_{1g} and E_{2g} modes accurately, as well as the SOR band located in the vicinity of E_{2g} of the W-containing samples. The Porto notation method [27] was used for the designation of the crystal and polarization directions. The [1 0 0], [0 1 0], and [0 0 1] crystallographic axes are denoted by the letters X, Y, and Z, respectively. The notation Z(XX)Z means that the direction of incident radiation is along the Z, the first and second terms in the bracket denotes the polarization of the incident and scattered light, respectively, and Z represents the direction of scattered light. For Z(XX)Z configuration, the analyzer, which was placed just in front of the charge-coupled device (CCD) camera, was set to have polarization axis that is parallel to the polarization of the incident linearly polarized laser beam. A fine adjustment in the orientation of the [1 0 0] crystallographic axis of the sample to the E vector of the incident linearly polarized laser beam was performed by maximizing the intensity of the A_{1g} mode. The Z(XX)Z configuration was obtained simply by placing the half-wavelength plate directly between the analyzer and the CCD camera.

![Fig. 2. Unpolarized Raman spectra between 150 and 500 cm^{-1} of Mo_xW_{1-x}S_2 layered mixed crystals. The dotted lines guided by eyes show position dependence of the peaks with Mo compositions x.](image)

![Fig. 3. Polarized Raman spectra between 150 and 500 cm^{-1} of Mo_xW_{1-x}S_2 layered mixed crystals. The dotted lines guided by eyes show position dependence of the peaks with Mo compositions x.](image)

The results of polarization-dependent Raman spectra between 150 and 500 cm^{-1} of several Mo_xW_{1-x}S_2 mixed crystals are shown in Figs. 2 and 3. The dotted lines guided by eyes show position dependence of the peaks with Mo compositions x.

In
For this wave number range, for 2H-MoS$_2$ single crystal, the peak denoted by I, which corresponds to A_{1g} mode, is detected for $Z(XX)Z$ configuration and quenched almost completely for that of $Z(XY)Z$ configuration. The lower lying peak denoted by II is associated with E_{2g} mode and observed both for $Z(XX)Z$ and $Z(XY)Z$ polarization configurations. Furthermore, the measured intensities of peak II for both $Z(XX)Z$ and $Z(XY)Z$ polarization show very similar values. The obtained results, together with the strong polarization dependence, are consistent with the selection rules of A_{1g} and E_{2g} modes as given by the Raman scattering tensors [28]. For the 2H-WS$_2$ sample, a similar polarization behavior for higher wave-number peak I is observed and assigned as the A_{1g} mode. The lower lying structure is determined to be composed of two peaks at 356 cm$^{-1}$ (designated as III) and 352 cm$^{-1}$ (designated as IV) in the $Z(XX)Z$ configuration. A clear resolution of this structure can be seen in the unpolarized Raman spectrum of 2H-WS$_2$ (Fig. 2), as well as in the $Z(XY)Z$ configuration in the polarized spectra (Fig. 3). The relative intensities for peaks III and IV in the $Z(XY)Z$ configuration are larger than that of the $Z(XX)Z$ configuration. This observation agrees with that reported by Sekine et al. [29]. Hence, the peak at 356 cm$^{-1}$ is assigned as the E_{2g} mode, whereas the peak at 352 cm$^{-1}$ is attributed to a SOR band. For the mixed Mo$_x$W$_{1-x}$S$_2$ samples, the assignment of peaks I and II can be facilitated by comparing their locations and polarization dependence with that of the binary end crystals. The relation of the relative intensities of peaks III and IV in the polarized Raman spectra were utilized for the assignment (Figs. 3 and 4).

Figure 4 shows the Raman spectra from 150 cm$^{-1}$ to 500 cm$^{-1}$ of Mo$_x$W$_{1-x}$S$_2$. From top to bottom, the value of the W composition x increases from 0 to 1 with a composition step size $\Delta x = 0.1$ according to the stoichiometry of the constituent elements W and Mo. With the increase in W composition, peak I moves to higher wave number. By contrast, as the value of x increases, peak II shifts to lower wave number with reduced peak intensity. In addition, with the increase in W composition, on the lower wave number side of the Raman spectra of Mo$_x$W$_{1-x}$S$_2$, two additional peaks (III and IV) appear. Both of these additional peaks demonstrate blue shift and become the dominant peaks at higher x values. An alloy disorder-related peak [30], which is positioned between peaks II and III, is also observed for the mixed ternary Mo$_x$W$_{1-x}$S$_2$ samples.
rule, thereby leading to the broadening and asymmetry of the Raman line shape. Symmetric phonon line of the A_{1g} mode for pure 2H-MoS$_2$ and 2H-WS$_2$ become asymmetric for Mo$_x$W$_{1-x}$S$_2$ mixed crystals.

Line shape analysis of the Raman spectra under A_{1g} mode for MoS$_2$, Mo$_0.5$W$_{0.5}$S$_2$, and WS$_2$ layered crystals; the inset in MoS$_2$ represents the W composition dependence of linewidth broadening of A_{1g} mode for the Mo$_x$W$_{1-x}$S$_2$ layered mixed crystals. Similar broadening and asymmetry of the phonon lines were previously observed in TiGa$_{1-x}$In$_x$S$_2$ layered mixed crystals [33]. The inset of Mo$_0.5$W$_{0.5}$S$_2$ shows the composition dependence of the full width at half maximum (FWHM) for A_{1g} mode. The FWHM values of the corresponding modes for MoS$_2$ layered crystals were higher than those for WS$_2$ crystals. In addition, as expected, the FWHM dependence is maximal at $x = 0.5$, which corresponds to the maximum substitution disorder in the mixed crystals.

4. Conclusions

The Raman spectra of Mo$_x$W$_{1-x}$S$_2$ layered mixed crystals were investigated for a wide range of composition (0 ≤ x ≤ 1). The peaks of the two dominant first-order Raman-active modes, A_{1g} and E_{1g}, and several SOR bands were observed between 150 cm$^{-1}$ and 500 cm$^{-1}$. The peaks, which correspond to A_{1g} mode, show one-mode type behavior, whereas the peaks of E_{1g} mode demonstrate two-mode type behavior for the entire series. These results are explained on the basis of the atomic displacements for each mode. For A_{1g} mode, only S atoms vibrate, thereby resulting in a one-mode type behavior for the mixed crystals. By contrast, for the E_{1g} mode, metal atoms vibrate, as well as S atoms. The mass difference of the vibrating Mo and W cations causes the two-mode type behavior of the E_{1g} mode. The largest FWHM value and asymmetry of A_{1g} mode, which are due to crystal disorder, are found at $x = 0.5$.

Acknowledgments

The author acknowledge the support of Prof. Ying Sheng Huang and Prof. Ching Hwa-Ho for providing experimental facilities and discussions in Department of Electronic Engineering National Taiwan University of Science and Technology.

References