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The Variational Calculation of Bulk Moduli for Liquid Binary
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The bulk moduli of the Na–K, Na–Cs, and K–Rb liquid equiatomic alloys at T = 373 K are calculated by the
variational method with the hard-sphere reference system. The local Animalu–Heine model pseudopotential and
Toigo–Woodruff exchange-correlation function are used for the calculation. A good agreement with experimental
data is achieved.
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1. Introduction

The variational [1] method with the additive hard-
sphere (HS) reference system had been applied to inves-
tigation of binary liquid metal alloys for the first time
in the work [2]. Since then, it continues to be used in
this field (for example, [3–10]; see also the review [11]).
In our previous studies of liquid alkali-metal’s alloys [12–
15] by different methods of the thermodynamic perturba-
tion theory (TPT) including the variational one, it was
shown that the Animalu–Heine (AH) model pseudopo-
tential (MP) [16] in the local approximation [17] allows
to obtain very good results for such thermodynamic cha-
racteristics as the Helmholtz free energy, internal energy,
entropy, and their mixing quantities. In the present work,
the applicability of the named pseudopotential for calcu-
lating the bulk moduli of liquid alkali-alkali metal alloys
is estimated on the example of Na–K, Na–Cs, and K–Rb
equiatomic alloys near their melting temperatures in the
framework of the HS variational method.

2. Theory

One of the ways to define the bulk modulus, BT , is the
following (hereafter, per atom):

BT = Ω
(
∂2F/∂Ω2

)
T
, (1)

where Ω is the mean atomic volume, F is the Helmholtz
free energy, T is the temperature. Here, we solve Eq. (1)
numerically using F found by the variational method.

In the first-order of the high temperature approxima-
tion (HTA) of the TPT [18] the Helmholtz free energy
is (hereafter, the quantities characterizing the reference
system and perturbation are labelled with the subscripts
“0” and “1”, respectively)
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FHTA = F0 + 〈U1〉0 , (2)
where U is the potential energy;

〈U1〉0 =
2π

Ω

∫ ∞
0

φ1(r)g0(r)r2dr. (3)

Here, φ(r) is the pair interatomic potential and g(r) is
the pair correlation function.

As a rule, to construct an effective pair potential for a
simple metal the nearly-free-electron (NFE) approxima-
tion is used (hereafter, in atomic units (a.u.)):

φNFE(r) =
z2

r
+

Ω

8π2

∫ ∞
0

F (q)
sin(qr)

qr
q2dq, (4)

where z is the valence and F (q) is the energy wave-
number characteristic.

Within the HS variational method Eqs. (2),(3) are
transformed to the following:

Fvar−HS = FHS +
2π

Ω

∫ ∞
σ

φ(r)gHS(r)r2dr, (5)

where σ is the HS diameter.
For the binary simple-metal mixture Eq. (5) is rewrit-

ten as follows:
F bin
var−HS−NFE = F bin

HS + Ubin
e − TSbin

e

+
2π

Ωbin

2∑
i,j=1

cicj

∫ ∞
σij

φNFEij(r)gHSij(r)r
2dr, (6)

where Ue is the electron contribution to the internal
energy calculated here using the Nozieres–Pines approx-
imation for the exchange-correlation energy [19], Se is
the electron contribution to the entropy, ci is the con-
centration of the i-th component; φij(r), gij(r) and σij
are the partial characteristics: pair potential, pair corre-
lation function and HS diameter, respectively. To calcu-
late F bin

HS the analytical expression obtained by Umar et
al. [20] is used. Since the calculating procedure is carried
out in the wave space, the HS partial structure factors,
SHSij(q), instead of gHSij(r), are needed for the calcula-
tion. We use the analytical expressions of SHSij(q) in the
Ashcroft–Langreth form [21].
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The generalization of Eq. (4) to the binary alloy is tri-
vial:

φNFEij(r) =
zizj
r

+
Ωbin

8π2

∫ ∞
0

Fij(q)
sin(qr)

qr
q2dq, (7)

where

Fij(q) = −Ωbinq2ωi(q)ωj(q)

8π

×
[
(εbinH (q)− 1)−1 + (1− fbin(q))

]−1
. (8)

Here, zi is the valence of the i-th component, εH(q) is
the Hartree dielectric function, f(q) is the exchange-
correlation function, which is taken here in the Toigo–
Woodruff form [22]; ωi(q) is the pseudopotential form-
factor of the unscreened i-th kind ion, which for the local
AH (LAH) model is expressed as follows:

ωLAHi(q) =
4π

Ωbinq2

×
[
(AiRMi − z̄) cos(qRMi)−

AiRMi sin(qRMi)

qRMi

]
× exp

(
−0.03

(
q

2kbinF

)4
)
, (9)

where z̄ = c1z1 + c2z2 is the mean alloy valence, Ai
and RMi are the i-th component parameters taken the
same as ones for the corresponding pure metals from [17]
(Table I); kF =

(
3zπ2/Ω

)1/3 is the Fermi wave vector.

TABLE I

Values of the pseudopotential parameters used for calcu-
lations (in a.u.)

Parameter Na K Rb Cs
RMi 2.1148 2.9990 3.3641 3.8677
Ai –0.1958 –0.1853 –0.1874 –0.1838

The minimization of F bin
var−HS−NFE is performed with

respect to σ11, σ22 and Ωbin. The last minimization
corresponds to the condition that the pressure is equal
to zero.

3. Results and discussion

The results obtained for Na–K, Na–Cs, and K–Rb
equiatomic alloys at T = 373 K are summarized in Ta-
ble II in comparison with experimental data [23, 24] and
other theoretical results obtained by the HS variational
method [3–5] and by methods of the dynamic theory of
liquids [25, 26].

The following pseudopotentials are used in aforemen-
tioned theoretical works: the Harrison first-principles
pseudopotential [27] extended to binary alloys [28, 29]
in [3]; the non-local MP of Wang et al. [30] with higher-
order terms of the pseudopotential perturbation the-
ory in [4]; the local MP of Heine and Abarenkov [31]
in [5]; the local MP of Ashcroft [32] in [25] and the first-
principles pseudopotential of Troullier and Martin [33]
in [26].

TABLE II

Bulk modulus, BT [1010 dyne/cm2], at T = 373 K

Calculation
Equat. Hafner Lai Yilmaz Jain Thakur This Exp.
alloy [3] [4] [5] [25] [26] work
Na-K 2.6 3.45 5.07 3.65 3.87 3.2 3.3 [23]
Na-Cs 1.7 2.56 5.21 – – 2.5 2.0 [24]
K-Rb 1.4 – – – – 2.0 2.2 [24]

The difference between our result and experiment is
3% for Na–K, 10% for K–Rb and 20% for Na–Cs. It is
correlated well with our previous works on other ther-
modynamic properties [11, 13] where an agreement with
experimental data for Na–K, K–Rb and Na–Rb alloys
was better than for alloys of alkali metals containing Cs.
All our results are more satisfactory in comparison with
experiment than results of other theoretical works except
for Hafner’s result for Na–Cs (Table II).

4. Conclusion

The work fulfilled shows the usefulness of the Animalu–
Heine model pseudopotential in the local approximation
for an accurate description of such an elastic deforma-
tion property as the bulk modulus for binary liquid al-
loys of alkali metals in the framework of the variational
approach.
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