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Micromechanical Investigation of Elastic Properties
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In this study, the mechanical properties of unidirectional fiber composites were determined by using the
representative volume element method. The aim of this study was to determine the equivalent elastic constants for
the “fiber composite polymer (PPE/PP) thermoplastic material” used in a wide variety of engineering applications.
At the first step, the micromechanical model was applied to the polypropylene (PP) fiber-matrix composite, and
then the microstructure form of the material was analyzed by finite element method considering “rule of mixture”.
The symmetry boundary conditions have been applied by using the representative volume elements in 3D finite
element models. The SOLID187 mesh element of ANSYS was used for the presentation of the microstructure
form of the fiber-matrix composite. The elastic constants obtained in this study were respectively as follows: the
longitudinal elastic modulus and the Poisson ratio E1, ν12, the transverse elastic modulus and the Poisson ratio
E2, ν23. For verification, the numerical results were also compared with the literature.
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1. Introduction

A fiber composite material can be defined as a com-
bination of matrix material, a series of continuous fibers
with an interface material which holds together these two
groups of materials. Such composite materials are widely
used in engineering applications to provide high strength
and stiffness. The strength of the fiber composite can
vary from 10 to 70% compared to the ratio of fiber vo-
lume fraction. There is an additional reinforcement vo-
lume limit of about 70vol.% to form a composite [1]. In
the screening of the new literature, there are various stu-
dies and methods on the effect of volume fraction ratios
of elastic constants in the fiber composite materials. Re-
presentative volume element (RVE) method was used in
general. Bhaskar et al. [2] studied on the finite element
(FE) modeling of the polypropylene fiber composite to
predict the elastic property of the fiber reinforced plas-
tics (FRP) material. According to this study, the most ef-
fective parameter to calculate the equivalent elastic con-
stants of the fiber composite material was defined as the
stress transfer mechanism between matrix and fiber un-
der axial loading. In other two studies, stress transfer
mechanism from matrix to fiber material by shear stres-
ses was examined in detail by using Cox theory [3, 4].
Houshyar et al. [5] performed the polypropylene fiber-
matrix composite modeling by using FE analysis (FEA).
According to this study, the ratios of matrix to fiber mo-
dulus as well as the interfacial stress in reducing first
stage of the interfacial failure and increasing equivalent
mechanical properties have been found significant. Sun
and Vaidya [6] reported the appropriate boundary condi-
tions for the RVE with various loading conditions. They
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used fiber reinforced materials for prediction of equiva-
lent composite elastic properties. Hbaieb et al. [7] studied
on prediction of stiffness of the composite by using the
polymer/clay nanocomposites and compared the results
with the Mori–Tanaka (M–T) model.

In this study, the boundary conditions were clarified
for the proposed model. Jiang et al. [8] reported that
the ratio of surface-to-surface distance of adjacent car-
bon nanotubes (CNTs) to the CNT diameter plays a key
role in improving the overall elastic modulus of the CNT-
reinforced composites when the tubes were perfectly alig-
ned, completely separated from other tubes, and ideally
bonded with the composite matrix. Alfonso et al. [9]
presented a review-research about the computational po-
tentialities of the FEM for the modeling and simulation
of composite materials. This review showed that the
most studied property was the Young modulus and ge-
ometric properties. Houshyar et al. [10] studied on the
effect of fiber concentration on mechanical and thermal
properties of fiber-reinforced polypropylene composites.
In their study, Cox–Krenchel and Haplin–Tsai equations
were used to predict tensile modulus of random fiber-
reinforced composites. Facca et al. [11] used the micro-
mechanical models available in the short fiber composi-
tes from literature to predict the stiffness of some com-
mercially important natural fiber composite formulati-
ons. Klasztorny [12] studied on the previous formulations
of the exact stiffness theory, and the theory was develo-
ped further based on selected boundary-value problems
of elasticity theory. In this article, 3D finite element mo-
deling was used to calculate the four elastic constants i.e.
E1, E2, ν12, ν23 of the transversely isotropic PPE/PP fi-
ber composite.

2. Micromechanical modeling

FE modeling with RVE obtained by using 9, 16, 25,
36, and 49 fibers embedded into rectangular and cubic
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matrix prisms. In this study, 420 × 420 × 250 µm3 and
420× 420× 420 µm3 dimensions for unit-cell were used.
The properties for the matrix material polypropylene co-
ethylene (PPE) were E = 1.05 GPa, ν = 0.33 and for the
PP fiber was E = 4.5 GPa, ν = 0.2. In this paper, fibers
were arranged parallel to each other with equal spaces
between them and it was named as “the transversely iso-
tropic composite”. This type of composite defined with
five linearly independent elastic constants: E1, E2, ν12,
ν23, G12. Subscripts 1, 2 and 3 represented the orthogo-
nal coordinate system and also the principle axes of the
fiber composite structure. The first axis was named as
1-axis and it was defined along the fiber direction which
was parallel to Z axis. The second one named as 2-axis
and it was defined with the perpendicular axis to the fiber
directions and named as X axis. The third one was na-
med as 3-axis which was perpendicular to the 1–2 plane
and which was denoted as Y axis. These three principle
axes were denoted by the Z–X–Y axes in the ANSYS so-
lutions, respectively (Figs. 1, 2). For the polypropylene
fiber-matrix composites, each of these five volume fracti-
ons; Vf (%)=10%, 17%, 27%, 40%, 54% was calculated
with four elastic constants E1, E2, ν12, ν23 (Table I) [2].
The first elastic modulus E1 was obtained from the cubic
matrix with dimensions 420×420×420 µm3 (Fig. 1) while
the second elastic constant was obtained by the rectan-
gular prism with dimensions 420×420×250 µm3 (Fig. 2).

Fig. 1. Boundary conditions for the longitudinal mo-
dulus of composite in Z direction (parallel to the fiber
direction) E1.

Fig. 2. Boundary conditions for the transverse modu-
lus of composite in X direction (perpendicular to the
fiber direction) E2.

ANSYS13.0 mesh element type was SOLID187 3D ten-
node tetrahedral structural solid element with three de-
grees of freedom per node (Ux, Uy, Uz). In the calculation

of the first and second elastic modulus values E1, E2 all
symmetry boundary conditions according to the loading
direction were defined in Fig. 2 and Fig. 3, in detail. The
axial loading was modeled by force and displacement.
The elastic constants were obtained by using these two
different loading applications such as: (i) mechanical lo-
ading (I): P = 1 N/node, (ii) displacement loading (II):
δ = 1 µm/node. The theoretical calculation of elastic
constants was obtained using the rule of mixture equati-
ons given below

E1 = EfVf + Em (1− Vf ) , (1)

ν12 = νfVf + νm (1− Vf ) , (2)

1

E2
=
Vf
Ef

+
(1− Vf )

Em
. (3)

Here, Ef , Em — the Young modulus values for fiber
and matrix, and νf , νm — the Poisson ratio values for
fiber and matrix, and Vf — volume fraction for fiber,
respectively. TABLE I

Results of rule of mixture (ROM) and FEA, number of
fibers nf , nodes nn and mesh elements nm used in FEA.
Ei in [GPa].

Vf nf E1 E2 E1 E2 SOLID187
[%] (ROM) (FEA) nn nm

10 9 1.40 1.14 1.38 1.23 66564 46805
17 16 1.64 1.21 1.47 1.25 66190 46519
27 25 1.98 1.32 1.72 1.40 37492 53326
40 36 2.43 1.51 2.44 1.47 38431 54662
54 49 2.91 1.79 2.96 1.95 58610 82513

3. Results and discussion
The numerical data obtained from the maximum

stress and strain distributions were viewed on the
counter nodal solutions from ANSYS. FEA applications
and analytic approximations (ROM) gave similar elastic
constants and they were presented on the curves in
Figs. 3, 4 and 5. In case of the implementation of the
symmetry boundary conditions on the rectangular and
cubic prisms including the fibers which were embedded
into the matrix material (RVE) unit-cell method was
developed [9]. In the consideration of the mechanical
P [N] and displacement δ [µm] based loadings, the
obtained elastic constants were reached to different
values that were mentioned in literature. According to
these non-overlapping results, the approximate percen-
tage relative error reached large scales (50%). In this
research, by using the unit-cell method by cubic prisms,
this error percentage was minimized. The mentioned
problem aroused from usage of the rectangular prism
while the stress distribution spread more easily drawn
on the direction of the fibers and difference of the
longitudinal elastic constants parallel to the fibers of the
unit-cell was exceeded by the cubic geometry and the
results of the two loading applications were overlapped
(Fig. 6). The numerical and theoretical results were
compared in Figs. 3–6. The approximate linear equation
(E1-trendline) was expressed in Eq. (4) and Fig. 3
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E1 = 0.0381Vf + 0.8629, R2 = 0.9694. (4)
The approximate quadratic equation obtained to present
the E2 distribution expressed in Eq. (5) and Fig. 4

E2 = 0.0003 (Vf )
2 − 0.0052 (Vf ) + 1.2609,

R2 = 0.9859. (5)
The approximate quartic and qubic equations
(Eqs. (6)–(7))

ν12 = −5× 10−7 (Vf )
4
+ 6× 10−5 (Vf )

3

−0.0021 (Vf )
2
+ 0.0277 (Vf ) + 0.2548, (6)

ν23 = −1× 10−6 (Vf )
3
+ 0.0003 (Vf )

2 − 0.0244 (Vf )

+0.6203 (7)
were obtained by curve fitting numerical calculations to
present the ν12 and ν23 distributions as seen in Fig. 5
(Eq. (3)).

Fig. 3. Curves for the Young modulus E1 values of the
composite calculated along the fiber direction.

Fig. 4. Curves for the Young modulus E2 values of
the composite calculated perpendicular to the fiber di-
rection.
The application of Z-axis directional mechanical (P )

and displacement (δ) based loadings on “fiber composite
polymer (PPE/PP) thermoplastic material” generated σz
distributions as shown in Fig. 7a and b. The normal
stress distribution generated on 9 fibers had higher va-
lues in case of displacement loading. The developing nor-
mal stresses at the tip points of the fibers were (σz)p =

0.348 × 10−4 N/µm2 and (σz)δ = 0.105 × 10−5 N/µm2.
The stress distribution results of the displacement (δ)
based loading are shown in Fig. 7c. As it is shown
in this figure, the calculated Z directional elongations
over the free surface of the material were equal to δz =
0.78614 µm whereas the equation for the inner sections

Fig. 5. Curves for the Poisson ratio values of the com-
posite.

Fig. 6. Comparison of the FEA models.

was δz = 0.4297 µm. This developing displacement (δ)
distribution showed us an extremely large relative de-
formation area in the matrix section of the composite.
The fiber and matrix material contained in the outer free
surface of composite was stretched. Figure 7d and e il-
lustrates the developing σz distribution on the 16 fibers
and the matrix section in which the fibers embedded.
The resulting stresses for the fibers and the matrix secti-
ons were equal to (σz)p = 0.193 × 10−3 N /µm2 and
(σz)p = 0.3781 × 10−3 N/µm2, respectively. Mechanical
loading generated σz distribution on 25 fibers as shown
in Fig. 7f. Here, the calculated average stress was equal
to (σz)p = 0.3847 × 10−1 N/µm2. Figure 7g presents
the σz distribution developed on the matrix section (26
fibers, load type-(II)). In the other two FE fiber com-
posite models there were 36 and 49 fibers (load type-
(I)). The related results were shown in Fig. 7h and i.
As shown in Fig. 7h, 36 fibers were approximately un-
der the normal stress of (σz)p = 0.17305 × 10−1 N/µm2

and, as can be seen in Fig. 7i, the average stress dis-
tribution for the matrix section of the 49 fibers-matrix
model was (σz)p = 0.282 × 10−3 N/µm2. Figure 7j and
k illustrates the δx and σx distributions of the 9 fibers-
matrix model (load type-(II)). The displacement loading
was applied parallel to the x-axis. Figure 7l and m de-
monstrates the δx and εx distributions of 49 fiber-matrix
model. The obtained average displacement and strain
values were δz = 0.7748 µm and εz = 0.83 × 10−2, re-
spectively.
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Fig. 7. (a) σz distribution on 9 fibers (load type-(I),
fiber direction); (b) σz distribution on 9 fibers (load
type-(II), fiber direction); (c) δz distribution on 9 fibers
(load type-(II), fiber direction); (d) σz distribution on
16 fibers (load type-(I), fiber direction); (e) σz distribu-
tion on matrix surface and 16 fibers (load type-(I), fiber
direction); (f) σz distribution on 25 fibers (load type-(I),
fiber direction); (g) σzdistribution on matrix (26 fibers,
load type-(II), fiber direction); (h) σz distribution on
36 fibers (load type-(I), fiber direction); (i) σz distri-
bution on the matrix and 49 fibers (load type-(I), fiber
direction); (j) δx distribution on 9 fibers (load type-
(II), loading perpendicular to fiber direction); (k) σx

distribution on 9 fibers (load type-(II), loading perpen-
dicular to fiber direction); (l) δx distribution on 49 fi-
bers (load type-(II), loading perpendicular to fiber di-
rection); (m) εx distribution on 49 fibers (load type-(II),
loading perpendicular to fiber direction).

4. Conclusion

In this research, the main changes about the distri-
bution of stresses on fibers and matrix by changing the
fiber volume fraction and the loading direction were
studied by using FEA (Fig. 7). According to the ana-
lyse results, when polymer type fiber and matrix elastic

constants were used, the changing geometry, loading ty-
pes and boundary conditions caused main changes in
equivalent elastic constant values proportionally. The ap-
proptiate boundary conditions were applied in obtai-
ning four elastic constants of the transversely isotropic
PPE/PPmaterial. The results obtained from 3D analysis
for polymer microcomposite were summarized as below:

(1) A linear relationship between the first elastic con-
stant E1 and fiber volume fraction Vf [%] was detected
[Fig. 3];

[2] A quadratic relationship between the second elastic
constant E2 and fiber volume fraction Vf [%] was de-
tected [Fig. 4];

[3] Qubic and quartic relationships between the ma-
jor and minor Poisson ratios ν12, ν23 and fiber volume
fraction Vf [%] were found [Fig. 5];

[4] For largest fiber volume fraction calculations, nearly
constant the Poisson ratio value ν23 was obtained [Fig. 5],

[5] With fiber volume fraction Vf [%] increase, decrea-
sing stress concentration in the fiber-matrix interface was
detected [Fig. 7e]. This effect occurred according to the
lack of sufficient space for the transmission from fiber to
the matrix due to the high fiber content Vf [54%].
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