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In the framework of the matrix product state representation the effect of a sudden turning on of the uniaxial
anisotropy on the time evolution of the Haldane state has been investigated. Depending on the value of the uniaxial
anisotropy parameter, the calculations were derived within (or outside) the region where the Haldane gap survives.
An exact expression for the time evolution of the Loschmidt echo has been derived and, moreover, its collapse and
revival behaviour was captured. In addition, the non-local order parameter of a time evolving state was tracked,

revealing two types of relaxations.
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1. Introduction

Above the range of very low temperatures many mag-
netic systems can demonstrate a quasi one-dimensional
(1D) behaviour. Moreover, the magnetic properties of
many compounds available for experiments are related
to antiferromagnetic spin chains. In the investigation
of the antiferromagnetic Heisenberg model, the chain of
S = 1/2 spins was first solved by means of the Bethe
ansatz in 1931 [1]. The ground state has no energy gap
to the excited states accompanied by the exponential de-
cay of the spin—spin correlations with distance. Although
initially the concept of the 1D magnetism was considered
as only theoretical, magnetic materials showing such a
behaviour were found in the 70’s [2]. This was of great
importance because of the effects associated with quan-
tum correlations and fluctuations, which are particularly
exposed in the 1D spin systems.

Since the dispersion of the elementary excitation spec-
trum for half-integer spin chains was as for the classi-
cal spin waves, it was implied that the behaviour of the
Heisenberg model with larger spins smoothly converges
to the classical case. It thus came as a surprise when Hal-
dane conjectured in 1983 that quantum Heisenberg an-
tiferromagnetic chains have qualitatively different prop-
erties according to whether the spin value is integer or
half-integer [3].

In recent years, cold atoms have been widely used
in advanced research to mimic phenomena in condensed
matter physics [4, 5. They are placed into optical lat-
tices providing a periodic potential without defects and
phonon excitations. As a result, cold atoms and ions
allow for practically perfect realizations of spin mod-
els [6, 7]. The comparison of the properties of integer
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and half-integer spin chains may be realized with trapped
ultra-cold atomic gases [7]. It opens the experimental
way to investigate the dynamical properties of the Hal-
dane state [8, 9] and gives the motivation for our theo-
retical research.

In this paper we focus on the time evolution of the
Haldane system after a global quantum quench of the D
uniaxial anisotropy. It corresponds to an experimental
situation, in which a global parameter has been changed
on a time scale smaller than the time scale of any system
process. As the Haldane state is overlapped with many
eigenstates of the nonzero-D Hamiltonian it can lead to
nontrivial dynamics. Furthermore, one can expect that
the value of the anisotropy constant affects the relaxation
dynamics.

The paper is organized as follows: in Sect. 2 the
model to study dynamics of the disturbed Haldane state
is defined, Sect. 3 presents the matrix product state
(MPS) formalism employed for time evolution simula-
tions, whereas the simulation results are discussed in
Sect. 4. Finally, Sect. 5 concludes our paper, summa-
rizing the main findings.

2. Model

In order to study the ground-state dynamics we have
considered the quantum chain with N = 102 sites and
open boundary conditions. Two other spin chains with
a length of N =4 and N = 10, which can be solved by
exact numerical methods, constitute a point of reference
for our considerations.

2.1. The vanishing uniazial anisotropy

The S = 1 antiferromagnetic Heisenberg chain is gov-
erned by the following Hamiltonian:
N-1
Hy=JY SPSP, +8YSY, +5;

i=1

e (1)
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where the parameter J > 0 is an exchange coupling con-
stant. It is known that to construct the ground state
of the Hamiltonian (Eq. (1)) each original S = 1 spin
can be written as two S = 1/2 spins in the triplet state.
Based on them the ground state (the so-called valence-
bond-state) can be built [10, 11]. However, when we are
dealing with an open chain, both S = 1 spins at the ends
can be replaced by the S = 1/2 spins to keep unchanged
a nonzero energy gap between the singlet ground state
|tbo) and the first excited state [10, 12, 13]. The ground-
state energy per spin is ¥ ~ —1.40 J and the excitation
spectrum has a gap A &~ 0.41 J [14].

Besides exhibiting the famed Haldane gap, the S =1
antiferromagnetic Heisenberg chain has been found to
have other surprising features. At first, due to the ex-
istence of a finite energy gap above the ground state,
the spin—spin correlations Cﬁk (o = z,vy, z) should decay
exponentially

e = (=) (5787, (2)
Recently another basic property of the Haldane phase
in spin-1 Heisenberg antiferromagnetic chains has been
brought: the eigenvalues of the reduced density matrix
are always in even multiplets [15]. Moreover, the Hal-
dane phase, as a topologically protected phase in one
dimension, does not obey the Landau paradigm [16] and
cannot be characterized by a local order parameter. But
a nonlocal hidden order can be characterized by the
antiferromagnetic alignment of +1 spins after omitting
all the sites with spin projection 0. It was consistent
with a breaking of a hidden Zy x Z5 symmetry, which
was revealed using a nonlocal unitary transformation by
Kennedy and Tasaki [17]. It leads to the existence of the
non-local order parameter O% (o = z,y, z) that should
be nonzero in the Haldane phase [18], where the Néel or-
der vanishes. It is defined by the non-local correlation
functions Of in the following way:

o . «@

O%= lm (05) #0, (3)

where
o =88 @ el g el T, el T g SR (4)

2.2. The non-zero uniazial anisotropy

In real materials the uniaxial anisotropy can be cre-
ated through the environment of the magnetic ion [19-21]
which implies adding the extra term to the Hamiltonian

(Eq. (1)):

N
Ho =D (52, (5)
i=1
where D is the uniaxial anisotropy parameter which de-
scribes the system with an easy axis (negative D) or an
easy plane (positive D). The Haldane gap persists in the
presence of the D/|.J| parameter between ~ —0.315 and
~ 0.968 [19, 22-26], so the calculation was performed for
the following values: D/|J| = —1.0,—0.1,0.5, 1.5.
The large D phase is established for the D/|J| > 0.968
and the transition separating the Haldane and large
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D phases is Gaussian. The Gaussian transition in the
S = 1 chain is topological, in that the parity of the
ground state changes from negative in the Haldane phase
to positive in the large-D phase. The Haldane gap van-
ishes at the critical value of D/|J| = 0.968 but increases
again afterwards, which primarily is related to the large
value of D. In the large D phase, the ground state is
given by a single tensor product of local states where all
spins are restricted to the S7 = 0 state.

Between the Haldane and Néel phases at D/|J]| <
—0.315 there is the second-order Ising transition [27]. In
the Néel phase the ground state exhibits a spontaneous
staggered magnetization. The result is that the non-local
order parameter identifying the Haldane phase, is also
non-zero here. However in this case, contrary to the Hal-
dane phase, the non-local order parameters O*Y decay
exponentially.

2.8. The ground-state overlap

The overlap between the zero-D ground state and the
ground-states for a non-zero uniaxial anisotropy has been
considered. As the total spin operator commutes with the
Hamiltonian (Eq. (1)) with and without the anisotropic
term (Eq. (5)), both the ground states belong to the sub-
space with total spin S* = 0.

The results are collected in Fig. 1. As shown, when the
chain is short, the scalar product decreases slowly with
increasing amplitude of the D parameter. However, when
the system size increases, the range of the D parameter
giving the nonvanishing scalar product, more and more
overlaps with the range of the D parameter for which the
Haldane gap is not closed for the infinite system.
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Fig. 1. The overlap of the initial ground-state function

|1o) with the ground-state functions |¢o) for non-zero
uniaxial anisotropy. The thick black section denotes the
Haldane regime for the infinite system.

3. Time evolution of matrix product states

In order to investigate the ground state and its dy-
namical properties after a sudden change of the Hamil-
tonian parameters the MPS formalism has been em-
ployed [28, 29]. The observation that for physical systems
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only minor part of the Hilbert space is involved [30], re-
sulted in the rapid development of numerical methods
based on a variational method within the space of MPS.
It corresponds to assigning a finite entanglement content
to spins in the ground state. Therefore, any state of the
spin chain can be presented in the MPS representation
dn D1,...,DNn_1
Z Z MleMngQ . Méf;]\/ 1, 1|0->v(6)
01,.-50N Q1,...,G4N—1
where |o) = |o1,...,0n), d; is the dimension of the lo-
cal base {o;} at the i-th site, whereas D; are related to
the entanglement of neighbouring spins. In an analogous
manner any operator A can be written as a matrix prod-
uct operator (MPO)'
Sdn d,..
A= Z Z WL Weees
----- ON o’l, ,o’N

Due to the above representation the state space grows
only polynomially in the system size (not exponentially
as usual). Thus, the time of calculations is significantly
reduced for d = 1 strongly correlated systems. When
the variational principle is applied, the ground state can
be found by the minimization procedure (1)|H|t¢)) under
the constraint (1|¢)) = 1 [31]. Moreover, it is one of the
most attractive features of the MPS representation that
the time evolution can also be performed very efficiently.
Therefore, discrete time as t = NAt can be used for
the Hamiltonian, when a second-order Trotter decompo-
sition is applied [29] the time-evolution operator can be
presented as

Wexla)(o’].(7)

e*i'HAt:efi’HoAt/Q efi'HEAt efi’HoAt/2+O(At3)’ (8)
where
N/2
Ho = JZ S5;—155; + S5;_155; + S5;_155;, 9)
i=1
N/2—1
He=J ) 5555+ 5555
i=1
N
+55155101 + DY _(57)%. (10)

i=1
Then the time-evolution algorithm takes a very simple
form [28]: one starts from |¢)y) and repeats the following
steps:

1. Applying the MPO of the odd bonds to |i(t)).

2. Applying the MPO of the even bonds to
o= 1P /21y (1))
3. Applying the MPO of the odd bonds to

e—iHeAt e_iH"At/QWJ(t».

4. Compressing the MPS [|¢(t + At)) =
e IHoAL/2 o= 1HAL o= HA/2)4) (1)) to the starting
dimension.

In the present studies the maximal local bond dimension
was D; = 120, whereas the time step was At = 107°.
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4. The Loschmidt echo

The stability of quantum systems to perturbations of
the Hamiltonian has been addressed by many studies [32].
It is relevant for fundamental research into the ther-
malization of isolated quantum systems [33], localization
phenomena, chaos [34, 35], or decoherence.

As for both Hamiltonians H; and H = Hy + Hp the
total spin is conserved, we can exploit this symmetry
to reduce the computational effort. Let us assume that
the initial state |1g) is the ground state of the Hamilto-
nian H; (Eq. (1)) belonging to its zero total spin sub-
space. For t > 0 the time evolution is governed by the
anisotropic Hamiltonian # and the [¢g) state is never
more its eigenstate. Nonetheless, the time evolution of
the initial state

(1)) = e yo) (11)
takes place in the anisotropic Hamiltonian subspace
again corresponding to total spin zero. In order to mea-
sure the overlap of the time-evolved state and the ini-
tial state we can use, so-called, the Loschmidt echo (also
called “quantum fidelity” commonly applied in the fields
of quantum information and quantum chaos [36]) defined
as [37]:

L(t) = [{olw () [* = [{oe™ ™ [tho)[*. (12)
If |¢;) and E; are the eigenstates and eigenvalues of the
new Hamiltonian, i.e., (H; + Hp)|¢;) = E;|¢;), the ini-
tial state |1g) can be expressed as a linear combination of
the new stationary states |¢g) = Zj o ¢jléj) where the
coefficients are defined as ¢; = (¢;]1o). This expansion
enables us to rewrite the Loschmidt echo in the following
way:
n—1
1) = [leol® + Y el exp (= i(Ex — Eo)t)[*, (13)
k=1

where FEj is the ground-state energy of the new Hamilto-
nian. Next, repeatedly using the de Moivre formula and
Pythagorean trigonometric identity the formula can be

simplified to the final form
Z \Ck\4+z lej2|ex|? cos (Ex — Ejt). (14)

>k

Figures 274 present the time evolution of the
Loschmidt echo after a rapid turning on of the uniaxial
anisotropy for the Haldane system of different lengths.
Because for the shortest chain the Haldane phase is
smeared out significantly, two curves in Fig. 2 were made
for higher values of the anisotropy parameter than usual:
D/|J| = —10 instead of -1 and D/|J| = 5 instead of 1.5.
In all cases the echo behaviour can be explained by
Eq. (14): there is a constant contribution from the sum
of the fourth powers of the coefficients supplemented by
a superposition of cosine functions. When the system is
very small, as in Fig. 2, the number of cosine functions
is notably reduced. For example, in this case, although
the subspace of total spin S* = 0 is ten-dimensional,
for each value of anisotropy only four coefficients are
non-vanishing. For the N = 10 chain the subspace of
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Fig. 2. The time evolution of the Loschmidt echo for
the 1/2-1-1-1/2 chain. The dashed lines mark a con-
tribution from the sum of the fourth powers of the c¢;
coefficients.
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Fig. 3. The time evolution of the Loschmidt echo for
the 1/2-1-1-1-1-1-1-1-1-1/2 chain. The dashed lines
mark a contribution from the sum of the fourth powers
of the ¢; coefficients.

Fig. 4. The time evolution of the Loschmidt echo for
the spin-1 chain (N = 102 including the S = 1/2 edge
spins). The figure includes cases related to the Hal-
dane phase (D/|J| = —0.1 and 0.5), the Néel phase
(D/|J| = —1) and large-D phase (1.5). Inset: the short-
term revival of the Loschmidt echo in the Néel state.
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total spin S* = 0 is 4246-dimensional and again the
number of non-vanishing coefficients is considerably re-
duced. Moreover, the more parameter D deviates from
zero, the greater the number of non-zero coefficients:
1112 for D/|J| = 0.1, 1150 for D/|J| = —0.5, 1303 for
D/|J| = 1.0, and 1364 for D/|J| = —1.5.

When the system is large (see Fig. 4), the Loschmidt
echo as usual converges to a constant value. But now, de-
spite a significant reduction of non-vanishing coefficients
their number is enormous. Furthermore, for a large sys-
tem one can notice an important regularity related to the
distribution of coefficient values. When the D value devi-
ates not much from zero (see Fig. 1), which occurs in the
Haldane phase, the coefficient ¢y dominates (c¢o = 0.923
for D/|J| = 0.1 and ¢y = 0.243 for D/|J| = —0.5) and the
role of the constant term is crucial. In contrast, when one
goes beyond the Haldane phase, the ¢ coefficient is very
small (co ~ 8 x1076 for D/|J| = 1.0 and ¢y ~ 3x 10~ 7 for
D/|J| = —1.5). Then the distribution of all coefficients
becomes more balanced and the constant term takes a
very small value of the order 107¢ for D/|J| = 1.0 and
of the order 107 for D/|J| = —1.5.

At the beginning of the time evolution, as one can
see, the decay of the Loschmidt echo is monotonic. Fur-
thermore, it is known from the standard perturbation
theory that the initial time decay of the Loschmidt
echo exhibits a Gaussian decay when the perturbation
is weak [38, 39]. As we have verified, regardless of
the value of the anisotropy parameter, for small Jt all
curves presented in Fig. 4 demonstrate such behaviour
L(Jt) ~ exp(—y x (Jt)?) where the rate of the expo-
nential decay is proportional to the second power of the
anisotropy parameter v ~ D?2. As can be seen from
Eq. (14), from time to time such a superposition of cosine
functions can be expected when the echo value increases
significantly. The time after which the full restoration
of the initial Loschmidt echo takes place is likely to be
hideously large but other peaks of the Loschmidt echo
should be available for our simulation. One of them is
demonstrated in the inset of Fig. 4 where the significant
revival of the Loschmidt echo appears in the presence of
the seemingly vanishing background.

5. Non-local correlations in the Haldane phase

The initial state (the Haldane state) is isotropic in the
spin space, so all the components are the same at t = 0.
After a sudden turning on of the uniaxial anisotropy the
x,y components behave differently than the z compo-
nent. To minimize edge effects in a finite system the
spins in pairs were chosen so that they are separated by
a distance 2k — 1 arranged symmetrically relative to the
chain center. As we have checked, regardless of the value
of the uniaxial anisotropy, the Néel correlation functions
decay exponentially during the whole time evolution.

The non-local order reflects the hidden symmetry in
the Haldane phase. Previously, we have examined that
the string correlation functions for the established ground
state of H; show a wide plateau followed by a grad-
ual decline as the ends of the chain are approached [13].
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The value of the plateau O* ~ —0.3743 (o = z,y, z), the
non-local order parameter for S = 1, was in accordance
with earlier numerical simulations [29]. Figure 5 presents
how the individual components of the non-local correla-
tions change over time for various values of the uniaxial
anisotropy.
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Fig. 5. The individual components of the non-local or-

der parameter for various D at Jt = 8.5. At t = 0 the
value of the plateau is O% =~ —0.3743. The figure in-
cludes cases related to the Haldane phase (D/|J| = —0.1

and 0.5), the Néel phase (D/|J| = —1) and large-D
phase (1.5).
0 - —
ol S
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Fig. 6. The time dependence of the non-local order
parameter between the S5 and S¢9; spins for various
negative D. The figure includes cases related to the
Haldane phase (D/|J| = —0.1), and the Néel phase
(D/|J| = —1). The doted lines correspond to the non-
local order parameter for the ground state |¢o) of the
anisotropic Hamiltonian. For D/|J| = —1 the non-local
order parameter O™Y vanishes.

Figures 6 and 7 present the time evolution of the string
correlation between the spins arranged symmetrically in
the distance of 51 lattice constants. The string correla-
tions calculated in the same way, for the ground state of
the anisotropic Hamiltonian are represented by dashed
lines. The values of the z-th component of the non-local
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Fig. 7. The time dependence of the non-local order
parameter between the S55 and S7g spins for various
positive D. The figure includes the cases related to
the Haldane phase (D/|J| = 0.5), and large-D phase
(D/]J| = 1.5). The doted lines correspond to the non-
local order parameter for the ground state |¢o) of the
anisotropic Hamiltonian. For D/|J| = 1.5 the non-local
order parameters O”Y and O vanish.

order parameter are in agreement with earlier reported
data [23].

According to our results, when turning on of the uni-
axial anisotropy leaves the system in the Haldane phase,
the non-local order parameter of the evolving state takes
non-zero values. Moreover, O*Y > OF in most of the
phase and only in the vicinity of the second-order Ising
transition between the Haldane and Néel phases the last
inequality is reversed. This is due to the proximity of
the Néel phase where the ground state exhibits a sponta-
neous staggered magnetization, O*Y disappears but O*
continues to grow there. In turn, all components of the
non-local order parameter evaluate to zero in the large-D
phase.

As far as the values of the string correlations in the
ground state of the anisotropic Hamiltonian are con-
cerned, it is hard to say that the string correlations of the
evolving state converge to them. Only one can see that
such a tendency appears at the very beginning of the time
evolution, but then vanishes. Perhaps, by analogy with
the revivals for the Loschmidt echo, this trend is back
from time to time, when the evolving state approaches
to the ground state |¢g) of the anisotropic Hamiltonian.
Unfortunately, our calculations are time-consuming and
we are not able to perform them enough long to test con-
clusively the supposition.

6. Conclusions

We have examined the ground-state response of the
finite S = 1 antiferromagnetic Heisenberg chain after a
sudden change of the uniaxial anisotropy. Depending on
the value of the uniaxial anisotropy parameter, the calcu-
lations were derived within (or outside) the region where
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the Haldane gap survives. We tackle the problem consid-
ering the time evolution of the system and applying the
MPS framework.

An exact expression for the time evolution of the
Loschmidt echo has been derived. It consists of a
time-independent part supplemented by the superposi-
tion of cosine functions. The collapse and revival of the
Loschmidt echo have been investigated as well.

When turning on of the uniaxial anisotropy leaves the
system in the Haldane regime, the non-local order pa-
rameter decreases, but still takes a finite value during
the time evolution. On the other hand, when the uni-
axial anisotropy is so large that the ground state of
the anisotropic Hamiltonian is no longer in the Haldane
phase, the nonlocal order parameter of the evolving ini-
tial state tends towards zero.
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