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We have calculated the spectroscopic data of the odd series nd [1/2]1 (3 ≤ n ≤ 9) of neutral argon atom

relative to the ground level 3P 6 1S0 using a fully relativistic approach based on the Dirac equation. This series
is one of three intermediate Rydberg series that converge to the first limit of ionization. The energy levels of this
series are predicted. The obtained energy levels results are judged by comparing them with the experimental ones
available in the literature. Within the uncertainty in the theoretical results, the agreement between our results
and the experimental ones was found to be reasonable. Based on this agreement, the oscillator strengths fij ,
the radiative transition rates Aij , the Landé g-factor, the magnetic dipole moment and the electric quadrupole
hyperfine constants for the levels in question are calculated. The obtained results of fij , Aij , and Landé g-factor are
compared with the theoretical and experimental results published by other researchers where available as well as
those published by NIST. Within the uncertainty in our results, a good agreement is found. Moreover, the studied
levels are situated near and under the first limit of ionization where autoionization effects take place.
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1. Introduction
The spectra of highly excited states of the argon atoms

have been extensively studied using both conventional
photo-absorption and laser excitation techniques [1–3].
These highly excited states, consisting of an external Ry-
dberg electron interacting with anisotropic ionic inner
core electrons (p5 configuration) straddle an interesting
place in physics. Spectroscopic parameters such as Landé
g-factors [2, 4–6], radiative lifetime and transition prob-
ability [7] of these atoms, are required in the analysis of
atomic structure, ionization spectroscopy, and its appli-
cations. Such parameters of low lying levels have been ex-
tensively measured using the Zeeman effect [2]. However,
fewer measurements have been taken for highly-lying lev-
els, in particular for levels situated near the first limit of
ionization [2, 8].

The singly ionized argon gases, ground state 3p6 1S0

yields two odd-parity states 3p5 1P3/2 and 3p5 1P1/2

corresponding to two different values of the total core
angular momentum jc = 3/2 and 1/2, respectively.
These two values generate two limits of ionization I3/2 =

127109.9 cm−1 ±0.1 cm−1 and I1/2 = 128541.8 cm−1

±0.1 cm−1 to which all the Rydberg series converge [8].
The excited levels are generally designated in the jlk-

coupling commonly called the Racah notation [9, 10].
In this notation, the orbital angular momentum, l, of
the excited electron couples with the total angular mo-
mentum, jc, to give the resultant angular momentum k.
The latter is then coupled to the spin, s, of the Rydberg
electron to give the total angular momentum J . The fine
structure levels belonging to the terms 3p5 1P3/2 and
3p5 1P1/2 are designated by 3p5 nl[k]J and 3p5 nl′[k]J ,
respectively. The odd series nd[1/2]1 (3 ≤ n ≤ 8),
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4d′ [3/2]1, 6d [3/2]1, and 8d [3/2]1 of the argon atoms
are studied experimentally using laser optogalvanic spec-
troscopy [2]. Moreover, the odd series nd[3/2]1, nd[1/2]1
and ns[3/2]1 of argon atom are experimentally studied
in the vacuum-ultraviolet region by Yoshino up to val-
ues of n = 58, 34 and 22, respectively [8]. For values of
principle quantum number n ≤ 18 for the Rydberg series
nd[3/2]1 and nd[1/2]1 and n = 20 for ns[3/2]1 these se-
ries are perturbed by the levels ns′[1/2]1 (5 ≤ n ≤ 10)
situated under the first limit of ionization and by the lev-
els nd′[3/2]1 (3 ≤ n ≤ 8) situated over the first limit of
ionization where autoionization effects take place.

The experimental study of the electronic transitions
from the starting levels to those situated near the first
limit of ionization is difficult because the classical meth-
ods of fluorescence detection are inefficient for the very
highly excited levels, which, in general quenched either
by collisional ionization, or, spontaneously if these lev-
els are auto-ionized. Therefore, it is difficult to analyze
experimentally their data. However, the multichannel
quantum defect theory (MQDT) analysis [11] performed
by several authors [12, 13] has furthermore completed the
wealth of experimental data gathered in the case of the
highly excited levels. Despite the wealth of experimental
and theoretical results provided by many researchers in
the world, many spectroscopic parameters for the levels
situated near the first limit of ionization still unknown
and for that we devote this paper.

In this paper, the energy levels, the oscillator strength,
the transition rates, the Landé g-factor, and the hyperfine
structure constants of the odd series nd[1/2]1 (3 ≤ n ≤ 9)
relative to 3p6 1S0 of neutral argon atom will be theoret-
ically calculated. These calculations will be carried out
by employing a fully relativistic approach based on the
Dirac equation. These parameters are essential for cal-
culating level populations and spectral line for non-local
thermodynamic equilibrium plasmas and X-ray lasers.
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2. The relativistic radiative transition rates Afi
and the absorption oscillator strength fif
2.1. The relativistic radiative transition rates Afi
The relativistic radiative transition rates Aif per sec-

ond corresponding to transition from the initial state i
to the final state f for an electron outside a closed
shell [11, 14, 15] is

Afi = 2αωif
2ji + 1

2L+ 1

(
jf L ji

1/2 0 −1/2

)2

|M̄if |
2
, (1)

where the matrix elements M̄if for a relativistic radiative
transition of a single electron multipole operator of or-
der L [15]. These matrix elements are either the integral
for electron multipole transitions or the integral for the
electron magnetic multipole transitions [15].

These radiative transitions are defined as

Mif=

{
M

(e)
if +GM

(1)
if for electron multipole transitions,

M
(m)
if for magnetic multipole transitions, (2)

where

M
(m)
if = (i)

l+1 2L+ 1√
L (L+ 1)

(kf + ki) I
+
L (ωif ), (3)

M
(e)
if = (i)

L

{√
L

L+ 1
[(ki − kf )I+L+1(ωif )

+(L+ 1)I−L+1(ωif )]

−
√
L+ 1

L

[
(ki − kf )I+L−1(ωif )− LI−L−1

]}
, (4)

M
(1)
if = (i)

L [
(ki−kf ) I+L+1 (ωif ) + (L+1) I−L+1 (ωif )

]
+ (ki − kf ) I+L−1 (ωif )LI−L−1 + (2L+ 1) JL, (5)

with

I±L =

∞∫
0

jl

(ωif
c
r
)(

Pniki (r)Qnfkf
(r)

±Qniki (r)Pnfkf
(r)
)

dr, (6)

JL =

∞∫
0

jl

(ωif
c
r
)(

Pniki (r)Pnfkf
(r)

+Qniki (r)Qnfkf
(r)
)

dr, (7)

where jl is the spherical Bessel function and G in Eq. (2)
is the gauge parameter. It takes the value 0 in the
Coulomb gauge [16, 17] and

√
L+1
L in the Babushkin

gauge [18–20]. In the non-relativistic limit, G = 0 gives
the velocity form of radiation matrix elements, while
G =

√
L+1
L gives the length form. The radial functions

Pnk (r) and Qnk (r) are the solutions of the coupled Dirac
equation for local central field V (r) [21]:(

d

dr
+
ξ

r

)
Pnk (r) =α

(
εnk−Vi(r)+

2

α2

)
Qnk (r) , (8)

(
d

dr
− ξ

r

)
Qnk(r) = α (−εnk − Vi(r))Pnk (r) (9)

with

ξ =

{
−
(
j + 1

2

)
= −l − 1, j = l + 1

2(
j + 1

2

)
= l, j = l − 1

2

, (10)

where α is the fine structure constant, and εnk are the
energy levels of an electron in a Coulomb field V (r).
These energies are defined by the two quantum numbers
n and k. The principal quantum number n is given by

n = n′ + |ξ| = n′ + k, |ξ| = k, (11)

n′ =

{
0, 1, 2, 3, . . . .., ξ < 0,

1, 2, 3, . . . , ξ > 0.
(12)

On the other hand, the radial functions Pnk (r) and
Qnk (r) must satisfy the boundary conditions

Pnk (r)

Qnk (r)

}
→ 0 when

{
r → 0

r →∞
, (13)

2.2. The absorption oscillator strength fif

The dimensionless absorption oscillator strength fif
for a transition from the initial level i to the final level
f are calculated in the single multipole approximation.
In this approximation, the interference between differ-
ent multipoles transitions will not be taken into account,
whereas transition rates corresponding to arbitrary mul-
tipoles will be taken into account. Under these condi-
tions, the line strength fif for the transition from ini-
tial atomic state function Ψi to final state function Ψf

induced by a multipole radiation field operator D̂(L)
m of

order L is

fif =
πc

(2L+ 1)ω2
if

∣∣∣〈Ψi| D̂(L)
m |Ψf 〉

∣∣∣2 . (14)

The last equation can be written in terms of the reduced
matrix elements as

fif =
πc

(2L+ 1)ω2
if

∑
µν

bµfbiν〈niki||D̂(L)
m ||nfkf 〉, (15)

where the reduced matrix elements 〈niki||D̂(L)
m ||nfkf 〉 are

given by

〈niki| d̂(L) |nfkf 〉 =

(
(2ji + 1)ωif

πc

2
)

× (−1)
ji− 1

2

(
ji L jf

1/2 0 −1/2

)
|M̄ if |. (16)

3. Landé g-factor

3.1. Problem setup

The Hamiltonian Ĥ describing the interaction of an
atom with a uniform magnetic field B has the form

Ĥ =
1

2

∑
i

eα̂i · (B × ri) , (17)

where the summation is taken over all atomic i-th

electron, e is the electron charge and α̂ =

(
0 σ̂

σ̂ 0̂

)
is
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a four matrix known as the Dirac operator and σ̂ repre-
sents the Pauli matrices. For simplicity, we shall drop the
index i in the following equations. In terms of the scalar
product of magnetic dipole moment spherical tensor of
rank 1, µ(1)

q , Eq. (17) becomes

Ĥ =
1

2

∑
µ(1)
q ·B (18)

with∑
µ(1)
q = −

∑
ie

√
8π

3
rα̂ · Y (0)

lq (r), (19)

where Y (0)
lq (r) represent the spherical harmonic vector.

The Landé g-factor gJ is defined by the magnetic
dipole moment operator µ̂ of an atom in the state
|JMJ〉 as

µ̂ = −gJµBĴ , (20)
where µB is the Bohr magneton.

Since matrix elements of the Hamiltonian given by
Eq. (18) can be calculated in the state |JMJ〉, the matrix
elements of the Hamiltonian Ĥ are
〈Ĥ〉 = gJµB〈Ĵ ·B〉, (21)

then the Landé g-factor gJ can be written by means of
the Wigner–Eckart theorem [14] as

gJ =
1

2µB

〈J ||
∑
µ
(1)
q ||J〉√

J (J + 1)
. (22)

On the other hand, the quantum electrodynamics correc-
tion imposes a correction on the electron gs factor [22].
This correction is given by

gs=2

(
1+

α

2π
−0.3828

(α
π

)2
+ . . .

)
≈2×1.001160, (23)

where α = 1
137 is the fine structure constant.

The correction to the electron gs factor leads to a cor-
rection to the relativistic interaction Hamiltonian by an
amount

∆Ĥ = 0.001160µBβ̂α̂ ·B (24)
and this leads to a correction to Landé g-factor gJ by an
amount

∆gJ = 0.001160
〈J ||

∑
µ
(1)
q ||J〉√

J (J + 1)
. (25)

3.2. Radial matrix elements
The relativistic eigenfunction for a state denoted in

the Dirac notation by |ΓJΠJMJ〉 can be expanded in
jj-coupled configuration state functions which are eigen-
functions of J2, Jz and the parity operator Π in the
multiconfiguration Dirac–Fock method (MCDF) as

|ΓJΠJMJ〉 =
∑
r

Cr|γJΠJMJ〉, (26)

where ΓJ and γJ represent the configuration and any
other quantum number required to specify a state, and
Cr are the expansion coefficients. On the other hand,
the configuration state functions are sums of product of
four component spin-orbital function named the Dirac
wave function. The spin spherical harmonics χkm de-
fined in Dirac wave equation can be written in the LSJ-

coupling as

χkm =
∑
q

C

(
l
1

2
j;m− qqm

)
Ylm−q (r)

×


(

1

0

)
, q = 1

2 ,(
0

1

)
, q = − 1

2 .
(27)

Moreover, an angular recoupling computer program [23]
is used in order to reduce the matrix elements
〈J‖

∑
µ
(1)
q ‖J〉 and 〈J‖

∑
∆µ

(1)
q ‖J〉 to terms involving

single-particle orbitals only

〈J‖
∑

µ(1)
q ‖J〉 =

∑
a,b

D
(1)
ab (rs) 〈naka‖µ(1)‖nbkb〉, (28)

〈J‖
∑

∆µ(1)
q ‖J〉 =

∑
a,b

D
(1)
ab (rs) 〈naka‖∆µ(1)‖nbkb〉,(29)

where

D
(1)
ab ≡ −

∑
(−1)

1
2 e

√
8π

3
rα̂ · Y (0)

lq (r) δbb′
√

2ja + 1

×
√

2jb + 1(−1)
a+b+jb+1 ·

{
b a ja
1 jb a′

}
(30)

and the {} denotes the 6j-symbol.
However, the single particle matrix elements can be

reduced into angular factors and radial integral
〈naka‖µ(1)‖nbkb〉 =

−α (ka + kb) 〈naka‖C(1)‖nbkb〉 [r]nakanbkb
, (31)

〈naka‖∆µ(1)‖nbkb〉 =

(ka + kb − 1) 〈naka‖C(1)‖nbkb〉
[
r(0)
]
nakanbkb

, (32)

where
〈ka‖C(1)‖kb〉 = (33)(−1)

jb−1/2√2jb+1

(
ja Jb 1

1/2 −1/2 0

)
for even la+1+lb,

0 for odd la+1+lb,

[r]nakanbkb
=

∞∫
0

r (Pnaka (r)Qnbkb (r)

+Qnaka (r)Pnbkb (r)) dr, (34)[
r(0)
]
nakanbkb

=

∞∫
0

r(0) (Pnaka (r)Pnbkb (r)

+Qnaka (r)Qnbkb (r)) dr. (35)

3.3. Hyperfine interaction

In relativistic framework, the hyperfine Hamiltonian is

Ĥhfs =
∑
i

T (k)
n (j)T (k)

e (i), (36)
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where T (k)
n and T

(k)
e are the spherical tensor operator

of rank k, representing the nuclear and electron angular
momentum, respectively, j and i designate the various
protons and electrons, respectively.

The mean value of Ĥhfs in a fine structure state
|JIFMF 〉 is given to first order as

〈Ĥhfs〉 =
∑
i

δMFMF ′ δFF ′(−1)
F+J+I

{
F J I

k I J ′

}

×〈I||T (k)
n ||I〉〈J ||T (k)

e ||J ′〉, (37)
where I is the nuclear spin and F = J + I is the total
angular momentum of the atom.

For the magnetic dipole case, k = 1, while the in the
electric quadrupole case k = 2.

For seek of simplicity, we express the nuclear dipole
moment in nuclear magneton µn units, the nuclear dipole
moment µI can be written as

µIµn = 〈IMI = I|T (k)
n0 |IMI = I〉 =(

I k = 1 I

−I 0 I

)
〈I||T (1)

n ||I〉. (38)

On the other hand, the operator T (1)
q is given by [24, 25]:

T (1)
q =

∑
t(1)q = −

∑
j

ie

√
8π

3

1

r2j
αj · Y (0)

1q (r̂j), (39)

where e is the absolute magnitude of the electron charge
and j denotes the j-th electron in the atom.
3.3.1. Calculation of the magnetic dipole hyperfine con-
stant AMD

The hyperfine constant AMD is related to the nuclear
magnetic moment by

AMD=µn
µI
I
〈J ||T (1)||J〉(J (J+1) (2J+1))

−1/2
. (40)

By means of Eq. (40), the hyperfine energy splitting EMD

due to the magnetic dipole is

EMD=
AMD

2
(F (F + 1)− I (I + 1)− J (J + 1)), (41)

3.3.2. Calculation of the electric quadrupole con-
stant BEQ

The electric quadrupole constant BEQ is related to the
nuclear quadrupole moment Q. The latter is given by

eQ = 2〈I,MI = I|Q(2)
0 |I,MI = I〉 =(

I k = 2 I

−I 0 I

)
2〈I||Q(2)

0 ||I〉. (42)

Since e is the charge and Q is the operator for the proton,
then eQ represent the charge reparation in the nucleus
and ( ) denotes 3-j symbol.

On the other hand, the operator T (2)
q is given by [26] as

T (2)
q =

∑
t(2)q =

∑
j

−e
r3j

√
π

(2k + 1)
Yqk. (43)

Here, the summation is carried out over all electrons of
the atom.

The electric quadrupole hyperfine constant becomes

BEQ = 2eQ

[
2J (2J − 1)

(2J + 1) (2J + 2) (2J + 3)

]1/2
×〈J ||T (2)||J〉. (44)

By means of Eq. (44), the hyperfine energy splitting EEQ
due to the electric quadrupole is

EEQ =
BEQ

8

(3C (C + 1)− 4J (J + 1) I (I + 1))

J (2J − 1) I(2I − 1)
, (45)

C = F (F + 1)− I (I + 1)− J (J + 1) . (46)

4. Uncertainty evaluation in theoretical results

The complete state of the theoretical results should in-
clude an estimate of the accuracy associated with these
results. A priori, reporting theoretical results with their
uncertainties helps us to make judgement about the qual-
ity of these results and facilitates meaningful compari-
son with other similar experimental ones or theoretical
predictions.

The uncertainty of transition energy in spin–orbit cou-
pling (LS-coupling) is given by [27] as

δE =
|Ecalc − Eexp|

Eexp
. (47)

Consequently, the uncertainty in the theoretical values of
the Landé g-factor δg can be given by

δg =
|gcalc − gexp|

gexp
. (48)

However, the uncertainty of the computed transition
rates Afi is given by [28] as

δÃfi =
|A′fi(l)−A′fi(v)|

max(A′fi(l), A′fi(v))
, (49)

where A′fi(l) and A′fi(v) are the energy scaled-length
and velocity, respectively. These scaled are estimated
by [28] as

A′fi(l) = Afi(l)(
Eexp

Ecalc
)
3

, (50)

A′fi(v) = Afi(v)(
Eexp

Ecalc
). (51)

5. Numerical results and discussions

The above equations are plugged in a power full
General Relativistic Structure Package code called
GRASP [29]. It is an integrated software package to
predict various atomic spectroscopy parameters, such as
atomic energy levels, oscillator strengths, radiative decay
rates, hyperfine structure constants, the Landé g-factors,
and specific mass shift parameters. These parameters are
predicted by using a multiconfiguration Dirac–Hartree–
Fock approach.

5.1. Calculations of energy levels and prediction of
oscillator strengths

The energy levels of the intermediate Rydberg odd
series nd[1/2]1 (3 ≤ n ≤ 9) relative to 3p6 1S0 are
numerically calculated and tabulated in Table I. Since
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available experimental results provide a check on the
accuracy of the calculation ones, the obtained results
are compared with the experimental ones obtained by
Minnhagen [30] with an uncertainty in the position of
each level of 0.05 cm−1 as shown by Table I. Within the
uncertainty in our theoretical results, this comparison
shows a reasonable agreement between the theoretical

and experimental results, therefore, we are confident of
our energy levels listed in Table I. However, the small dif-
ferences in the experimental and theoretical energies are
due to the calculations of the central potential for radial
orbitals and recoupling schemes of angular parts. More-
over, this difference might be due to the perturbation
between nd and nd′ series.

TABLE I

Energy levels, dimensionless oscillator strengths fif , of the odd series nd[1/2]1 (3 ≤ n ≤ 9)
relative to 3p6 1S0 of neutral argon atom Ar(I), as obtained in the length (Fl) and velocity (FV )
forms of the electric dipole operator in the Babushkin and Coulomb gauge, respectively.

Energy Oscillator strengths Ratio
n Eexp [cm−1] Etheor [cm−1] Fl FV Fl/FV

3 111 818.028 111 823.09 ± 4.527×10−5 0.086414 0.095866 0.901
4 118 651.395 118 647.46 ± 3.318 ×10−5 0.187570 0.207608 0.903
5 121 932.8477 121 937.00 ± 3.402 ×10−5 0.147075 0.162141 0.907
6 123 467.9733 123 470.10 ± 1.721 ×10−5 0.104600 0.115051 0.909
7 124 554.874 124 557.93 ± 2.452 ×10−5 0.072790 0.079965 0.910
8 125 135.831 125 135.35 ± 3.808 ×10−6 0.051377 0.056403 0.910
9 125 613.07 125 614.17 ± 8.769 ×10−6 0.037159 0.040777 0.911

The interaction between the excited electron and the
electrons in the core is complicated by exchange effect.
These complications are confined to the region of configu-
ration space where the electron penetrates the ionic core.
The behavior of stationary wave functions in this region
varies slowly with the degree of excitation and common
to the wave functions of many excited and ionized states
in the vicinity of the ionization limits.

Table I shows that for excitation energies less than
the first limit of ionization, there are many number of
discrete levels forming perturbed Rydberg series. Us-
ing the accurate location of these levels, the correspond-
ing oscillator strength fij in the length (Fl) and velocity
(FV ) forms of the electric dipole operator, respectively,
were calculated. The obtained results are also tabulated
in Table I. The fifth column of Table I shows the ratio
Fl/Fv. The obtained results confirmed the fact that Fl
and Fv are of the same order despite the fact that they
are calculated in different gauge. On the other hand, our
theoretically obtained results of the oscillator strength
for the levels 3d[1/2]1 is compared with those obtained
by other researcher either experimentally [31–34] or the-
oretically [35, 36]. Table II shows these comparisons.
Westerveld and co-workers [31] measured experimentally
the oscillator strengths using self-absorption of resonance
radiation for fourteen resonance transitions of neon and
argon. The measurements on argon transitions were car-
ried out in the first order spectrum. The problem with
these transitions is the overlap with lines in second and
third order. However, Westerveld and co-workers ar-
ranged their experimental setup in order to eliminate any
contribution of these higher order lines in the first order

spectrum of argon. Therefore, these higher order lines
contributions are responsible of the slight difference be-
tween our results and the Westerveld ones.

TABLE II

Comparison of the oscillator strength fij for the
3p6 1S0 → nd[1/2]1 transition array.

Experimental Theoretical

n Present work
Electron
impact

method [30]

Chan
et al.
[31, 32]

Lee and
Lu [33]

Lee
[34]

Fl FV fij fij fij fij

3 0.086414 0.095866 0.0929 0.0914 0.092 0.092

Unfortunately, these are the only levels that we found
in the literature. The lack of experimental results of os-
cillator strengths and transition rates for the levels in
question is due to the excitation energies. These levels
are autoionized and their absorption spectra are increas-
ingly overlapping and difficult to resolve as the excita-
tion energy approaches the limits of ionization. The lack
of experimental results for both oscillator strengths and
transition rates suggests that more appropriate theoret-
ical models are necessary for spectrum calculations that
included the highly excited states as well as the ground
states.

5.2. Calculation of the radiative transition rates
We calculated the radiative transition rates Afi

(in s−1) of the odd series nd[1/2]1 (3 ≤ n ≤ 9) relative
to 3p6 1S0 of neutral argon atom Ar(I), as obtained in
the length Afi(l) and velocity Afi(v) forms of the elec-
tric dipole operator. The obtained results are tabulated
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in Table III. We were unable to compare these results
with other results published either by other researchers
or NIST web site. To the best of our knowledge, these
transition rates are calculated for the first time.

TABLE III

Radiative transition rates Afi [s−1] of the odd series
nd[1/2]1 (3 ≤ n ≤ 9) relative to 3p6 1S0 of neutral argon
atom Ar(I), as obtained in the length Afi(l) and veloc-
ity Afi(V ) forms of the electric dipole operator in the
Babushkin and Coulomb gauge, respectively.

n Afi(l) Afi(V ) δÃfi

3 2.40732× 108 2.66922× 108 0.09820
4 2.07298× 108 2.29444× 108 0.09640
5 1.72738× 108 1.90433× 108 0.09298
6 1.26840× 108 1.39513× 108 0.09086
7 8.99551× 107 9.88217× 107 0.08981
8 6.42726× 107 7.05599× 107 0.08910
9 4.68733× 107 5.14367× 107 0.08873

5.3. Calculation of Landé g-factor
and the hyperfine structure constants

The relativistic Landé g-factor is calculated for the
odd series nd[1/2]1 (3 ≤ n ≤ 9) relative to the ground
level 3p6 1S0. The obtained results are tabulated in
Table IV. As there is no theoretical data of the Landé
g-factor, many experimental ones have been left with-
out comparison with the theoretical ones. However, our
results are compared to those obtained, experimentally
by Salah [2], Chenevier and Moskowitcz [37] or theoret-
ically by Aymar and Schweighofer [7] as well as NIST.
The comparison shows an acceptable agreement between
these results. The Landé g-factor for the levels 3d[1/2]1,
4d[1/2]1, 5d[1/2]1, 10d[1/2]1 and 11d[1/2]1 are not mea-
sured by Salah, while he measured the Landé g-factor
for the levels 6d[1/2]1, 7d[1/2]1, 8d[1/2]1 and 9d[1/2]1 by
using optogalvanic atomic laser spectroscopy. The un-
certainty of his results is estimated to be 0.02. On the
other side, Chenevier and Moskowitz [37] measured ex-
perimentally the Landé g-factor for the levels 3d[1/2]1
using optically detected magnetic resonance technique.
The theoretical value of this level is determined by Aymar
and Schweighofer [7]. Since there is no other experimen-
tal or theoretical data for the levels under consideration
available in the literature, our theoretical results could
be used to determine the hyperfine constants in cross
level experiment [38–40]. They also provide a sensitive
test to the different part of atomic wave functions from
those decisive to the hyperfine constant and the oscillator
strengths.

The magnetic dipole AMD and the electric quadrupole
BEQ hyperfine constants are calculated by GRASP. The
obtained results are tabulated in Table V.

It is worth to mention that the theoretical results of
Landé g-factor for the odd series nd[1/2]1 (3 ≤ n ≤ 9)
and the hyperfine structure constants are reported here
for the first time.

TABLE IV

Relativistic Landé g-factor for the odd Rydberg series
nd[1/2]1 (3 ≤ n ≤ 9) relative to 3p6 1S0 of neutral argon
atom.

This Exp. work Theor. work
n work [2] [37] NIST [7]
3 1.45930 ± 0.01962 1.4885(20) 1.481
4 1.42157 ± 0.03097 1.467
5 1.38549
6 1.21278 ± 0.00591 1.22
7 1.34326 ± 0.00997 1.33
8 1.21507 ± 0.00405 1.22
9 1.32564 ± 0.01972 1.30

TABLE V

The hyperfine structure constants for the odd
Rydberg series nd[1/2]1 (3 ≤ n ≤ 9) relative
to 3p6 1S0 of neutral argon atom.

n AMD [MHz] BQE [MHz]
3 −19.98789 −30.69076
4 −13.77403 −24.18999
5 33.07344 −28.41008
6 44.36763 −31.02961
7 50.88277 −32.60004
8 54.78067 −33.56238
9 57.23293 −34.176258

6. Conclusion

A fully relativistic approach based on the Dirac equa-
tion is used to calculate the spectroscopic data of the
odd series nd[1/2]1 (3 ≤ n ≤ 9) relative to the ground
level 3p6 1S0. These series are known as intermediate or
quasi-Rydberg series [41, 42]. The energy levels of this
series are calculated. The obtained results are judged by
comparing them with the experimental ones available in
the literature. Within the uncertainty in our theoretical
results, the agreement between our results and the ex-
perimental ones was found to be reasonable. Based on
this agreement, the oscillator strengths fij , the radiative
transition rates Aij , the Landé g-factor, and the magnetic
dipole AMD and the electric quadrupole BEQ hyperfine
constants for the levels in question are predicted. The ob-
tained results of the oscillator strengths and Landé g-
factor are compared with the available experimental and
theoretical ones. A fairly good agreement is found.

The Landé g-factor is a measure of the magnetic sen-
sitivity of atomic levels. Heretofore, the experimental
values for Landé g-factor of argon neutral atoms are far
from being complete. Consequently, our results in this
paper could be useful to investigations for some radia-
tive parameters in argon atoms.

Our new, fairly complete, set of precise and reliable
theoretical results could be of great interest for both
experimental and theoretical research on neutral argon
atoms. These results should stimulate further theoreti-
cal work in the atomic spectroscopy field.
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