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A Pointer Theory Explanation of Weak Value Persistence
Occurring in the Quantum Three Box Experimental Data
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A concise exact pointer theory for von Neumann projector measurements of pre- and post-selected quantum
systems has previously been used to formalize the notion of weak value persistence and apply it to explain pointer
position data collected from a dynamical quantum non-locality detection experiment. This paper applies this exact
pointer theory to provide an operational explanation of weak value persistence observed in the data obtained from
a recent quantum box experiment.
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1. Introduction

The theoretical notion of the weak value Aw of a
quantum mechanical observable A was introduced by
Aharonov et al. [1–3] nearly three decades ago. This
quantity is the statistical result of a standard measure-
ment procedure performed upon a pre-selected and post-
selected (PPS) ensemble of quantum systems when the
interaction between the measurement apparatus and each
system is sufficiently weak. Unlike the standard strong
measurement of a quantum mechanical observable which
significantly disturbs the measured system (i.e., “col-
lapses” the wave function) and yields the mean value 〈A〉
as the measured value of A, a weak measurement of an
observable for a PPS system does not appreciably disturb
the quantum system and yields Aw as the measured value
for A. While the interpretation of weak values remains
somewhat controversial, several of the unusual properties
predicted by weak value theory have been experimentally
verified, e.g. [4–6].

Projection operators, i.e. projectors, are an important
part of the mathematical formalism of quantum mechan-
ics. The measurement and interpretation of the weak val-
ues of projectors have also played central roles in recent
experimental observations of dynamical quantum non-
locality-induced effects, e.g. [7, 8], as well as in the theo-
retical and experimental resolution of “Hardy’s paradox”,
e.g. [9, 10], and the “quantum box problem”, e.g. [11, 12].
Because of the significance and experimental utility of
projectors, a concise exact theory for projector measure-
ment pointers for both PPS and pre-selected only (PSO)
systems has recently been developed [13].

In 2004 Resch et al. successfully performed an im-
pressive optical experiment using weak values of projec-
tors that verified the counterintuitive theoretical predic-
tions of the quantum three box gedanken problem [12].
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As an aside, they noted that two of the three projec-
tors measured during the experiment maintained their
unit weak values well beyond the boundaries that defined
their weak measurement regime (i.e., their weak values
persisted) and correctly pointed to the discussion in [11]
as the theoretical explanation for this persistence (i.e., if a
strong measurement of A is a with unit probability, then
the associated weak measurement of A will also be a).
The purpose of this paper is to provide an (also correct)
alternative operational explanation (i.e., more akin to ex-
perimental actuality) for this persistence strictly in terms
of the concise exact pointer theory for projector measure-
ments elaborated in [13].

2. Weak measurements and weak values
Weak values arise in the context of the von Neu-

mann description of a quantum measurement at time
t0 of a time-independent observable A that describes
a quantum system in an initial fixed pre-selected state
|ψi〉 =

∑
J cj |aj〉 at t0, where the set J indexes the eigen-

states |aj〉 of Â with Â |aj〉 = aj |aj〉. In this description
the Hamiltonian operator for the interaction between the
measurement apparatus (i.e., the measurement pointer)
and the quantum system is

Ĥ = γ (t) Âp̂.

Here γ (t) = γδ (t− t0) defines the strength of the im-
pulsive measurement interaction at t0 and p̂ is the mo-
mentum operator for the pointer which is in the initial
state |φ〉. Let q̂ be the pointer’s position operator that
is conjugate to p̂ and assume that 〈q|φ〉 ≡ φ (q) is real
valued.

Prior to the measurement the pre-selected system and
the pointer are in the tensor product state |ψi〉 |φ〉.
Immediately following the measurement the combined
system is in the state

|Φ〉 = e−
i
~
∫
Ĥ dt |ψi〉 |φ〉 = e−

i
~γÂp̂ |ψi〉 |φ〉 ,

where e−
i
~γÂp̂ is the von Neumann interaction operator.

If the state |ψf 〉, 〈ψf |ψi〉 6= 0, is post-selected at t0, the
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resulting pointer state is

|Ψ〉 = 〈ψf |Φ〉 = 〈ψf | e−
i
~γÂp̂ |ψi〉 |φ〉 . (1)

Of course the PPS states are selected at times
ti < t0 < tf and must be evolved forward and backward
in time, respectively, to the measurement time t0.

A weak measurement of A occurs when the interac-
tion strength γ is sufficiently small so that the system
is essentially undisturbed by the measurement and the
pointer’s position uncertainty ∆q is much larger than the
separation between Â’s eigenvalues. In this case the last
equation becomes

|Ψ〉 ≈ 〈ψf | 1̂−
i

~
γÂp̂ |ψi〉 |φ〉

or |Ψ〉 ≈ 〈ψf |ψi〉 T̂ (γAw) |φ〉 ,

where
Aw ≡ 〈ψf | Â |ψi〉 /〈ψf | ψi〉 ≡

(
A1
)
w

(2)
is the complex valued weak value of observable A and the
operator

T̂ (γAw) ≡ e−
i
~γAw p̂

is the translation operator for |φ〉 defined by the action

〈q| T̂ (γAw) |φ〉 = φ (q − γReAw)

and yielding
|〈q|Ψ〉|2 ≈ |〈ψf |ψi〉|2 |φ (q − γReAw)|2

as the associated pointer distribution profile. Thus, after
the measurement the final mean pointer position is
〈Ψ | q̂ |Ψ〉 = 〈φ |q̂|φ〉+ γReAw, (3)

i.e., the pointer is translated from its initial mean po-
sition 〈φ |q̂|φ〉 by the amount γReAw. When 〈ψf |ψi〉
is small, then ReAw can lie far outside the eigenspec-
tral limits of Â and the associated pointer shift is large.
It should be noted that under certain circumstances the
imaginary part ImAw can be used to control the variance
of the pointer state [14].

In order for measurements to qualify as weak mea-
surements, the associated momentum uncertainty of the
pointer must simultaneously satisfy the following two for-
mal weakness conditions which define the extreme bound-
ary of the weak measurement regime, e.g. [8]:

∆p� ~
γ
|Aw|−1

and

∆p� min
(n=2,3,...)

~
γ

∣∣∣∣ Aw
(An)w

∣∣∣∣1/(n−1)

.

When measurements are performed in accordance with
these inequalities, i.e. when they are well within the
extreme boundary of the weak measurement regime,
they are weak measurements and are said to be per-
formed in the weak measurement regime. Measurements
performed outside the weak measurement regime are
strong measurements and are not considered to be weak
measurements.

3. Exact pointer theory for projector
measurements of PPS systems: an overview

Let Â be a projection operator and observe that since
Ân = Â, n ≥ 1, the von Neumann interaction operator is
given exactly by

e−
i
~γÂp̂ = 1̂− Â+ ÂŜ, (4)

where Ŝ ≡ e−
i
~γp̂ is defined by its action 〈q| Ŝ |φ〉 ≡

φ (q − γ) upon the initial pointer state |φ〉. Substitution
of Eq. (4) into Eq. (1) and normalizing the result gives

|Θ〉 =
e iχ

N

(
1−Aw +AwŜ

)
|φ〉 (5)

as the exact normalized pointer state that results from a
measurement of A. Here

e iχ ≡ 〈ψf |ψi〉
|〈ψf |ψi〉|

,

N =

√
a+ J(1̂),

a = 1− 2ReAw + 2 |Aw|2

and
J (x̂) =Aw (1−A∗

w) 〈φ| x̂Ŝ |φ〉+A∗
w (1−Aw) 〈φ| Ŝx̂ |φ〉 ,

x = 1, q.

Using Eq. (5) the exact pointer position after the mea-
surement is readily found to be

〈Θ |q̂|Θ〉 =

(
1

N2

)[
a 〈φ|q̂|φ〉+ J (q̂) + γ |Aw|2

]
. (6)

Note the succinct form of Eq. (6) and — more impor-
tantly — the fact that no approximations have been used
to obtain it. Thus, Eq. (6) is not only exact — it is also
valid for any interaction strength γ.

Of particular interest here is the fact that when Aw = 1
the exact mean pointer position given by Eq. (6) for any
interaction strength is precisely equal to the mean pointer
position given by Eq. (3) obtained from a weak value
measurement of A performed in the weak measurement
regime (a similar argument also holds for Aw = 0). To see
this, observe that when Aw = 1, then a = 1, J (q̂) = 0 =

J
(

1̂
)
, so that N = 1 and

〈Θ |q̂|Θ〉 = 〈φ|q̂|φ〉+ γ = 〈Ψ |q̂|Ψ〉 , (7)
where the second equality also applies only in the weak
measurement regime.

The exact mean pointer position is a linear function of
interaction strength and has 〈φ|q̂|φ〉 as its “y-intercept”
and Aw = 1 as its “slope”. Since Aw = 1 regardless of the
magnitude of γ, the pointer is said to exhibit weak value
persistence, i.e. Aw = 1 persists outside the weak mea-
surement regime where the measurements are no longer
weak measurements.

4. The quantum three box experiment

The quantum three box problem is an example of
a PPS quantum system that exhibits counterintuitive
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behavior, e.g. [11]. In the Resch et al. experimen-
tal implementation of the quantum three box problem
a particle is prepared at time ti in a pre-selected state
|ψi〉 =

√
2/5 |A〉 +

√
2/5 |B〉 +

√
1/5 |C〉 that is the su-

perposition of being in one of three orthogonal boxes
A, B, and C with probabilities 2/5, 2/5, and 1/5, re-
spectively, and is post-selected at time tf to be in the
state |ψf 〉 = (1/2) |A〉 + (1/2) |B〉 −

(
1/
√

2
)
|C〉. Using

these PPS states (in this case they remain fixed when
evolved to the time of measurement t0) in Eq. (2) the
theoretically predicted weak values for the projectors
P̂A ≡ |A〉 〈A|, P̂B ≡ |B〉 〈B|, and P̂C ≡ |C〉 〈C| — which
correspond to the weak probabilities for finding the par-
ticle in the respective boxes at the intermediate time of
weak measurement ti < t0 < tf — are readily found to be
PAw = 1, PBw = 1, and PCw = −1. Clearly, PCw is coun-
terintuitive since it is negative and lies outside the normal
range of positive values for classical probabilities. Vaid-
man refers to the weak probabilities PAw = 1, PBw = 1,
and the sum PAw + PBw + PCw = 1 as three elements of
reality for the particle [11].

Fig. 1. Experimental data for weak value measure-
ments of P̂AP̂B and P̂C [12].

The Resch et al. experiment verified these theoreti-
cal predictions. Since the purpose of this paper is only
to provide an explanation of the weak value persistence
features identified in their data from the operational per-
spective of measurement pointer response, no discussion
concerning their experimental apparatus or procedure is
provided here (the interested reader is invited to con-
sult [12] for details concerning the experiment). To this
end consider the relevant (to this paper) part of their ex-
perimental data presented in Fig. 1. There mean pointer
positions in rms beam width units obtained for weak
measurements of P̂AP̂B and P̂C (shown as open circles,
solid triangles, and solid circles, respectively, in Fig. 1)

are plotted for various measurement interaction strengths
— also expressed in rms beam width units. The inter-
action strengths for which the measurements are weak
— i.e., the weak measurement regime — are contained
within the interval ranging from −0.5 to +0.5 rms beam
width units and is delineated in Fig. 1 by vertical dashed
lines.

A curve is fit to the weak value measurement pointer
position data for P̂C and it is readily found that the slope
of the linear portion of the curve contained within the
weak measurement regime is −1. As per Eq. (3), this
slope corresponds to the weak value PCw and confirms
the correctness of its theoretically predicted value. Also,
as predicted by theory and as required by Eq. (3), the
measured pointer positions for PAw and PBw both follow
the dashed theoretical line of slope 1 within the weak
measurement regime and have unit values. Thus, PAw =
1 = PBw and the theoretical predictions are completely
confirmed.

Of interest here is the fact that these pointer posi-
tions continue to track this dashed line outside the weak
measurement regime where the measurements become
increasingly stronger as |γ| > 0.5 and can no longer
qualify as weak measurements — i.e., the weak values
PAw = 1 = PBw persist beyond the weak measurement
regime. This behavior has been explained theoretically
using the Aharonov, Bergmann, and Lebowitz formal-
ism [15]. In particular, it has been proven theoretically
that [16] “if the weak value of a dichotomic variable equals
to one of its eigenvalues, then the outcome of a strong
measurement of this variable is equal to that eigenvalue
with probability one”. This clearly applies here to both
P̂A and P̂B since they are projectors and their unit weak
value is one of their two eigenvalues (recall that 1 and 0
are the only two eigenvalues for any projector).

A direct and precise operational explanation based
upon the exact properties of the experimental measure-
ment pointer can also be provided for this persistence.
Let us recall from Sect. 3 that Eq. (6) is the exact
(i.e., no approximations are made) expression for the
mean pointer position for a projector measurement of
a PPS system that is applicable for any interaction
strength. As was shown there, when the weak value of the
projector being measured is 1, the associated exact mean
pointer position for any interaction strength is identical
to the weak value theoretical mean pointer position for
measurements in the weak measurement regime. This
fact is expressed by Eq. (7) which clearly shows that the
exact mean pointer position varies linearly with inter-
action strength. In particular, the line has unit slope
(corresponding to PAw = 1 = PBw in the experiment)
with the initial mean pointer position (which is zero in
the experiment) as its “y-intercept”.

Thus, the persistence of the mean pointer positions
for the PAw = 1 = PBw measurements in the experi-
ment is predicted exactly by Eq. (7). Since it exhibits
a smooth linear behavior for pointer position within and
outside the weak measurement regime, this prediction
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is completely consistent for projectors — from an opera-
tional pointer perspective — with the above statement in
italics, i.e., Eq. (7) accurately reflects the projector’s unit
weak value within the weak measurement regime and its
strongly measured unit value outside the weak measure-
ment regime. Consequently, the following statement has
been demonstrated to provide an alternative operational
explanation of weak value persistence for the projectors
measured in the quantum box experiment in terms of
pointer position: “the mean pointer position associated
with a projector measurement of a PPS system is given
exactly by Eq. (7) for an arbitrary interaction strength
when the projector’s weak value is 1”.

5. Concluding remarks

Equation (7) and the experimental data in Fig. 1 for
the PAw = 1 = PBw measurements both imply that these
weak values will persist indefinitely with increasing inter-
action strength. Equation (7) also shows that there can
be no persistence associated with the P̂C pointer position
measurements. This is readily apparent in Fig. 1 where
— outside the weak measurement regime — the data
points converge to the mean value 〈ψi| P̂C |ψi〉 = 1/5 as
the interaction strength increases.
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