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In this communication, we present the r-space implementation of the Kohn–Sham realization of the density
functional theory with the exact exchange functional within the computational algorithm for computers of parallel
architecture. In comparison to the standard approach employing the local density functional, the scheme with
exact exchange functional requires roughly ten times larger computational burden. The developed parallelization
procedure accelerates the computations by a factor of four and six for the exact exchange and the local density
functional schemes, respectively. It brings us closer to the treatment of dispersive van der Waals interactions on
the fully ab initio level in the large class of systems.
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1. Introduction

The Kohn–Sham realization of the density functional
theory (KS–DFT) [1] is nowadays the most common and
widely used computational method for calculation of co-
hesive and electronic properties of the whole plethora
of systems in physics, chemistry, and materials science.
There are available numerous computer packages employ-
ing the standard approximations to the DFT energy func-
tionals, mostly implementing the expansion of the elec-
tronic states in the Kohn–Sham (K–S) equations into a
basis. Plane waves are employed in the codes such as
VASP [2] or Quantum Espresso [3], whereas localized
atomic-like functions (orbitals) are used in the SIESTA
package [4]. All of these methodologies for solving K–
S equations have their drawbacks. Solution of the K–S
equations on the real space grid constitutes an alternative
way to determine K–S wave-functions and cures some of
the drawbacks in the basis based methods. For exam-
ple, it allows for implementation of periodic boundary
conditions only in the directions of the physical period-
icity of the studied systems and eliminates the need of
employing the so-called supercell geometry for systems
lacking periodicity in some directions. This is of partic-
ular importance for zero, one, and two-dimensional sys-
tems, which plays extremely important role in materials
science nowadays. However, the biggest advantage of the
real space solution of the K–S equations is that this com-
putational scheme allows for efficient implementation of
K–S scheme on the computers of parallel architecture,
which is a prerequisite of modern computational science.

Search for efficient numerical codes solving the K–S
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equations is of particular interest nowadays, when the
reliable predictions of materials properties require higher
accuracy of computations than provided by standard
approximations to the exchange-correlation functionals,
such as local density approximation (LDA), generalized
gradient approximation (GGA), or/and hybrid function-
als, employed routinely in the K–S method. For example,
the correct description of many systems (such as carbon-
based layered materials) requires the proper account of
the dispersive long-range Van der Waals (VdW) interac-
tions. These interactions are not provided by the stan-
dard functionals. The exact-exchange (EXX) KS-DFT
with correlation energy calculated employing the ran-
dom phase approximations (RPA) has proved to over-
come many shortcomings of the standard KS–DFT ap-
proximations [5] and, in particular, correctly accounts
for VdW interactions. However, the EXX scheme alone is
computationally very demanding and requires large com-
putational power and/or efficient numerical algorithms.

In this communication, we examine the accuracy and
efficiency of the parallelization scheme for the K–S
method with the EXX exchange functional implement-
ing direct r-space formalism.

2. Methodology

Our studies are based on the newly developed method
of the solution of the K–S equations directly on a dis-
crete grid in r-space. This scheme has been previously
used by other authors [6, 7], however, we have written
our own computer code to make it suitable for paral-
lelization. This has been done by implementing the finite
difference method [8] and developing the efficient paral-
lelization procedure. In our computational scheme, three
layers of parallelization method have been implemented,
as it is presented in Fig. 1. Following computational
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steps have been performed in parallel: (i) the summa-
tion over k-points to get total charge density and energy,
(ii) the solution of K–S equations for wave-functions of
the occupied states, and (iii) for each k-point and the
wave-function, the solution is searched for simultaneously
on the subsets of r-points constituting the total mesh.
The parallelization method is based on the standardized
and portable message passing interface (MPI) [9].

Fig. 1. Three MPI parallelization levels are employed
in the code, distributing the computational tasks over
processors. The processors are organized in a hierar-
chy of groups. The first group is distributed over k-
points (denoted by k). For each of the k-point group,
the wave function subgroup (the number of wave func-
tion denoted by j) is distinguished. Moreover, for given
k-point and wave function, the mesh parallelization is
done.

In the developed code, we employ variational imple-
mentation of the EXX method, closely following Ref. [10].

3. Results

The efficiency tests of the developed computational
scheme have been performed for the representative sys-
tem consisting of two carbon atoms. We have done two
tests. In the first one, we check how the computational
time depends on the number of processors (cores) used
for the parallelization. We have performed tests for two
exchange-correlation functionals in the K–S scheme, the
first one with the standard LDA functional, and the sec-
ond one with the accurate EXX functional. To get some
relation to the “supercell” calculations, periodic bound-
ary conditions in three dimensions have been imposed on
the calculated system, and 30 × 30 × 30 real-space grid
have been used for the cubic supercell with the edge equal
to 7.5 Å. All necessary Brillouin-zone (BZ) integrations
have been carried out on a uniform mesh with 8 k-points,
which corresponds to the 2×2×2 grid. During the calcu-
lation, the self-consistent field (SCF) cycle has been iter-
ated until the total energy changed by less than 10−3 eV.
Our results show that the calculations with EXX formal-
ism require usually at least 10 times longer CPU time
than the standard LDA ones (see Fig. 2). Partly, it is
caused by the fact that more SCF steps are needed in the
EXX scheme than in the standard LDA method to reach
the same accuracy level of the energy. It is also apparent
that the highest acceleration of computations is reached
for distribution of computational task over 16 cores, for

both the LDA and the EXX exchange functional. For
higher number of cores used in the parallelization proce-
dure, the time of computations saturates in the LDA case
and even increases in the EXX problems. This behavior is
ascribed to the increasing communication burden among
the critical number of processors. Through paralleliza-
tion, the computation time can be decreased by factor 6
in the LDA case, and by factor 4 in the EXX case.

Fig. 2. Dependence of the time needed to reach the re-
quired convergence of the calculations versus the num-
ber of cores used for approaches with the LDA and
the EXX functional in the K–S scheme. The EXX is
roughly 10 times computationally more demanding than
the standard LDA. The inset shows the zoom in of the
scaling of the CPU time with the number of cores for
the LDA method.

Fig. 3. Dependence of the computation time on the
type of boundary conditions employed in the computa-
tions. In the 2DIM case (periodic boundary conditions
in two dimensions) one can save up about 25% of com-
puter time in comparison to the 3DIM case (periodic
boundary conditions employed in all three dimensions),
however 2DIM case requires more SCF steps.

In the second test, we take the advantage of the devel-
oped code that gives us opportunity not to use the pe-
riodic supercell in all three dimensions and consider the
same system of C2 molecules on the same 30 × 30 × 30
point grid as in the first test, but now employing pe-
riodic boundary conditions only in two dimensions and
not in all three, as it has been done previously. For tests
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with periodic boundary conditions in three and two di-
mensions (indicated hereafter as 3DIM and 2DIM, re-
spectively), we use more sophisticated EXX functional.
We perform the integration over the Brillouin zone em-
ploying in both cases two k-points, and use four cores to
parallelize the code. The results are depicted in Fig. 3.
One can see that employing periodic boundary condi-
tions in two instead of three dimensions can speed up
the calculations by about 25%, even when the number
of self-consistent steps required to reach assumed con-
vergence increases considerably in the 2DIM case (73 in
comparison to 51 in the 3DIM case). This is the result
of the different Hamiltonian matrices (i.e., kinetic energy
part of the Hamiltonian) used in 2DIM and 3DIM cases
according to finite difference method based discretizing
scheme.

4. Summary

Our calculations have revealed that the usage of the
exact exchange scheme for solution of the Kohn–Sham
equations costs approximately 10 times more computa-
tional time than employment of the standard local den-
sity approximation to the exchange and correlation func-
tional. Three layers of parallelization employed in our
code can accelerate computations by a factor of 4 and
6 in the case of the EXX and the LDA functionals em-
ployed to solve Kohn-Sham equations, respectively. The
parallelization procedure gets more efficient and the cal-
culations can be accelerated further, if one reduces the
number of directions with the artificial boundary condi-
tions employed within the supercell geometry to solve the
K–S equations.
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