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Waiting Time Correlations
in Transport through Two Coupled Quantum Dots
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Waiting times between subsequent tunneling events in the double quantum dot system are shown to be corre-
lated. The magnitude and the sign of the cross-correlation depend on the degree and the character of modulation
of tunneling rates in the one dot due to the interaction with the charge state of the other, as well as on the relation
between different time scales of the system dynamics.
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1. Introduction

Current fluctuations can give useful information about
the underlying mechanism of the mesoscopic transport.
There are two approaches to the study of these fluctua-
tions. Full counting statistics (FCS) analyses the number
of transferred particles in the given time interval. In an
alternative approach, distribution of time delays between
subsequent physical events, known as waiting time dis-
tribution (WTD), is studied [1]. In quantum dots both
FCS and WTD can be studied using charge detection
techniques [2].

Dasenbrock et al. [3] have shown the correlation of sub-
sequent waiting times in the coherent transport through
a quantum point contact described within the scatter-
ing matrix formalism. Here the study is extended to the
case of quantum dots. I show the presence of the wait-
ing time correlation in the sequential tunneling trans-
port through the capacitively interacting quantum dots,
where the transport in one quantum dot is modulated by
the charge state of the other. All calculations are made
within the Markovian master equation formalism.

2. System and methods

I consider the four-terminal system of two capacitively
coupled quantum dots (Fig. 1a). Similar system was
studied previously both experimentally [4] and theoret-
ically [5]. Each dot is coupled to different left (source)
and right (drain) leads. The voltage bias is assumed to
be high in comparison with the temperature, such that
transport is unidirectional (the tunneling against the bias
due to thermal excitations is not possible). I assume that
tunneling rates between one dot and leads depend on the
charge state of the other dot due to the energy depen-
dence of the density of states in leads. It is possible ex-
perimentally to make tunneling rates energy dependent
in a controllable manner, as shown recently by Thier-
schmann et al. [6]. Finally, I assume a strong intra-dot
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Fig. 1. (a) System of two capacitively coupled quan-
tum dots; Γi(E) and γi(E) — energy dependent tun-
neling rates. (b) Diagram of possible charge configura-
tions with transition rates between them. Black dots de-
note electrons occupying quantum dots. Superscripts U

in the tunneling rates refers to the situation, when the
other dot is charged.

Coulomb repulsion — each dot can be occupied by a max-
imally one electron. Thus, there are four possible charge
configurations of the whole system, with corresponding
transition rates between them (see Fig. 1b).

In order to study the transport in the double quantum
dot system I use the Markovian master equation

ρ̇(t) = Lρ(t), (1)
where ρ(t) — a column vector containing state proba-
bilities, L — a square matrix representing the Liouvil-
lian. In the studied system coherences are assumed to
be absent. I focus on the stationary state with ρ̇(t) = 0.
The WTD is calculated using the approach developed by
Brandes [1]. The Liouvillian is split in the following way:

L = L0 +

N∑
k

Jk, (2)

where operators Jk describes different jump processes
into and out of the system. Let wkl(τ) denote proba-
bility density function of waiting times between a jump
of type k and a successive jump of type l. A single wait-
ing time will be denoted as τkl. The Laplace transform
of wkl(τ) is given by the expression
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wkl(s)=

∫ ∞
0

e−sτwkl(τ)dτ=
Tr(Jl(s− L0)

−1Jkρ0)
Tr(Jkρ0)

, (3)

where ρ0 is the vector of the stationary state. Statistical
moments of the n-th order of the distribution wkl(τ) are
given by the expression

〈τnkl〉 = (−1)n
(
dnwkl(s)

dsn

)
s=0

. (4)

Now I focus on the dynamics of the upper quantum dot.
Let τLL denote the time between subsequent jumps from
the left lead to the dot. By τLR I denote the time between
a jump from the left lead to the dot and a successive jump
from the dot to the right lead (the electron dwell time).
The time τRL during which the dot is empty is defined in
an analogous way. Then I calculate a covariance of sub-
sequent times τLR and τRL, which is a measure of their
correlation. It is defined in the following way:
〈∆τLR∆τRL〉 = (〈∆τ2LL〉 − 〈∆τ2LR〉 − 〈∆τ2RL〉)/2, (5)

where ∆τkl = τkl − 〈τkl〉 is a deviation about the mean,
〈∆τ2kl〉 = 〈τ2kl〉 − 〈τkl〉2 is a variance. Normalized cross-
correlation NCC is defined as a covariance normalized to
the product of standard deviations of analyzed quanti-
ties: NCC = 〈∆τLR∆τRL〉/

√
〈∆τ2LR〉〈∆τ2RL〉.

3. Results

I study the dependence of the magnitude and the sign
of the cross-correlation on the tunneling rates. First, a
limit is considered when dynamics of the 2nd dot is much
slower than of the 1st dot. It is equivalent to the slow
modulation of the quantum dot dynamics by the environ-
ment. In such situation the sign of the cross-correlation
is given by the expression

sgn(NCC) = sgn((ΓUL − ΓL)(Γ
U
R − ΓR)). (6)

This result can be understood qualitatively in the follow-
ing way. Let us assume that ΓUL > ΓL. Fast tunneling
from the left lead to the dot occurs with the higher proba-
bility when the 2nd dot is charged. If the 2nd dot remains
charged, the probability, that tunneling to the right lead
will also be fast, is increased when ΓUR > ΓR and de-
creased when ΓUR < ΓR, which makes waiting times re-
spectively positively or negatively correlated.

Fig. 2. Four state diagrams of the dynamics of systems
with different tunneling rates symmetries. The circular
arrow in (b) denotes the probability flux arising due to
the broken symmetry (flowing in the clockwise direction
for a > 0).

Fig. 3. Normalized cross-correlation of waiting times
for the system shown in Fig. 2a for Γ = 1.

Then I study the influence of finite values of tunneling
rates between the 2nd dot and the leads on the cross-
correlation. First, I consider the system with symmet-
ric tunneling rates: γi = γUi = γ, Γi = (1 − a)Γ and
ΓUi = (1 + a)Γ with a ∈ [−1, 1] (Fig. 2a). In such case
value of the cross-correlation is given by the expression

NCC =
a2(1− a2)Γ 2

4γ2 + 4γΓ + (1− a4)Γ 2
. (7)

The dependence of the cross-correlation on a is shown
in Fig. 3. The cross-correlation is positive in accordance
with Eq. (6) and is expressed by an even function of a.
The magnitude of the cross-correlation decreases when
γ increases. This has a following explanation: faster
switching of the charge state of the 2nd dot reduces the
probability that subsequent jumps in the 1st dot will
be correlated. In the limit of γ → ∞ the correlation
vanishes.

In the next step I consider the asymmetric system with
γi = γUi = γ, ΓL = ΓUR = (1 + a)Γ and ΓUL = ΓR =
(1 − a)Γ with a ∈ [−1, 1] (Fig. 2b). The dependence

Fig. 4. Normalized cross-correlation of waiting times
for the system shown in Fig. 2b for Γ = 1.
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of the cross-correlation on a is shown in Fig. 4. In this
case the cross-correlation is also expressed by an even
function of a. For γ → 0 the cross-correlation is always
negative, in accordance with Eq. (6) and for γ → ∞ it
vanishes, as in the previously considered case. However,
for finite values of γ the cross-correlation becomes pos-
itive if a2 > 1 − (γ/Γ )2. This can be explained using
the four-state model as a result of the circular probabil-
ity flux, defined as a difference of transition rates for the
clockwise and the anticlockwise directions. The flux in-
creases the probability of the following process: fast jump
in the 1st dot — switching of the charge state of the 2nd
dot — fast jump in the 1st dot. Thus the probability
of fast transitions in 1st dot taking place subsequently is
increased. If this process predominates over the subse-
quent jumps occurring when the charge state of the 2nd
dot is fixed, cross-correlation becomes positive.

4. Conclusions

I have shown the correlation of waiting times between
tunneling events in the capacitively interacting double
quantum dot system. The magnitude and the sign of
the cross-correlation can provide information about the
relative change of tunneling rates due to the interaction
with the second dot and about the time scale of the dy-
namics of the second quantum dot. The cross-correlation
is especially significant, when the dynamics of one quan-
tum dot is slowly modulated by the charge state of the
other. This result suggests possible application of the
waiting time correlation analysis for other cases where
electronic transport is modulated by some external sys-
tem, for example a spin impurity [7] or a vibrational state
of a molecule [8]. Possible applications can also be find
beyond the electronic transport, for example in biochem-
ical systems, where statistical properties of the dynamics
of similar Markovian models are studied [9].
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