
Vol. 130 (2016) ACTA PHYSICA POLONICA A No. 5

Proceedings of the 45th International School and Conference on the Physics of Semiconductors “Jaszowiec” 2016, Szczyrk

Transport Characteristics of Gated Core-Multishell
Nanowires: Self-Consistent Approach
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The influence of the applied gate voltage on the coherent propagation of the conduction electrons through
the InGaAs/InP core-multishell nanowires with the surrounding gate is considered. The solution of the three-
dimensional Schrödinger equation within the effective mass approximation is found using the adiabatic method.
The electrostatic potential distribution generated by the all-around gate is determined from the self-consistent pro-
cedure applied to the Schrödinger–Poisson problem. The Landauer–Büttiker formalism and quantum transmission
boundary method are applied to calculate the transport properties of the considered nanosystem.
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1. Introduction

Recent development of nanotechnology enables to fab-
ricate the semiconductor nanowires (NW) with the core-
multishell structure (CMS) for which the outer diame-
ter is less than 30 nm [1]. Such nanostructures find an
application in the quantum electronics because of their
transport properties which are determined by the quan-
tum size effect and interference phenomena [2] and can
be controlled by an external electric field generated by
the electrostatic gates. This allows to construct the ver-
tical transistor with all-around gate on the basis of the
considered nanostructures [3]. However, the properties of
such nanodevices strongly depend on materials and the
geometric parameters, as we have shown in our previous
report where we have investigated the influence of the
gate voltage on the coherent propagation of the conduc-
tion electrons through the CMS–NW [4].

In the present report we generalize our previous results
for a model including the self-consistent electrostatic po-
tential distribution. For this purpose, we solve the three-
dimensional Schrödinger–Poisson problem and we deter-
mine the current–voltage characteristics of the CMS–NW
via the Landauer–Büttiker theory. In contrast to the pre-
vious report [4], the radius of the core and thicknesses of
shells are much smaller, which follows recent examples of
experimental research [3].

2. Method of calculations

In the present study of a semiconductor CMS–NW we
apply a theoretical model given in detail in our previ-
ous report [4], but with modified geometric parameters.
The core and the outer shell of the nanowire are made of
InGaAs, with the InP inner shell placed between them.
The nanostructure is surrounded by an all-around gate
placed close to the drain electrode. The Hf0.8Al0.2O in-
sulator layer separates the gate and the wire.
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The adiabatic approximation [5] is used to solve the
3D Schrödinger–Poisson problem. It is defined by the
system of equations, which consists of the Schrödinger
equation(

− ~2

2m∗
∇2 + U (r)

)
ψ (r) = Eψ (r) , (1)

and the Poisson equation with the Dirichlet boundary
condition for the electrostatic potential,

ε0∇ · (ε (r)∇V (r)) = −ρ (r) , (2)
where m∗ is the effective mass of conduction electrons,
V (r) is the electrostatic potential and ε(r) is the position-
dependent relative electric permittivity. The total poten-
tial energy of the conduction electrons consists of three
terms

U(r) = UC(r) + UB(r) + Ue(r), (3)
where UC(r) is the hard-wall confinement energy, UB(r)
represents the profile of the conduction band bottom
characterizing each layer of the nanowire, and Ue(r) =
−eV (r) is the potential energy resulting from the
electron–electron interaction and the applied voltages.
The charge density is given by the formula

ρ (r) = −e (n (r)−ND (r)) , (4)
where the carrier density n(r) is calculated from the
relation

n (r) =
∑
n

∫ ∞
−∞

dED (E)
(
fFD (E,µs, T ) |ψs

n (r;E) |2

+fFD (E,µd, T ) |ψd
n (r;E) |2

)
, (5)

where
fFD (E,Er, T ) = [1 + exp ((E − Er) / (kBT ))]

−1 (6)
is the Fermi–Dirac distribution at temperature T with
the electrochemical potential µs of the source, µd =

µs− eVds of the drain, and ψs/d
n (r;E) denote wave func-

tions of electrons entering the device from source/drain
electrodes, respectively. The total density of states D(E)
has the form
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~

) 3
2

, (7)

and the donors distributionND(r) is given by the formula

ND (r) =

{
ND, source and drain electrodes,
0, elsewhere,

(8)

with ND chosen to guarantee the charge neutrality of the
device.

Self-consistent calculations used to determine the po-
tential profile are based on the underrelaxation procedure

Vn+1 (r) = (1− ω)Vn (r) + ωV s
n+1 (r) , (9)

where the parameter ω has a value between 0.1 and
0.5 chosen to obtain the best possible performance, and
V s
n+1 (r) is obtained directly from the Poisson equation.

Convergence of solution is assured by the condition∆ < ε
where ∆ is the relative sum of square differences of the
potential profiles between last two iterations,

∆ =

∑
r (Vn+1 (r)− Vn (r))2∑

r V
2
n+1 (r)

, (10)

and ε is the tolerance set to 10−5.
Calculations of every iteration are performed on a uni-

form computational grid in the following steps: (1) the
Poisson equation is solved for the initial density of charge
(which is set to zero), (2) the Schrödinger equation is
solved for perpendicular 2D cross-sections of the wire,
and (3) the wave functions along the z-axis are calcu-
lated for every energy in the considered range. These
wave functions are used to determine the transmission
coefficient which will be used for electric current calcu-
lations. They are also used to reconstruct the 3D wave
functions required to find the density of charge which
will be used in the next iteration of the self-consistent
algorithm.

The analysis of the transport properties of the CMS
nanowire is based on the electronic current formula [2]:

Id(Vds, Vg, T ) =
2e

h

∑
n

∞∫
−∞

dETn (E;Vds, Vg)

× (fFD (E,µs, T )− fFD (E,µd, T )) , (11)
where Tn (E;Vds, Vg) is the transmission coefficient calcu-
lated from wave functions obtained from quantum trans-
mission boundary method [6].

3. Results and discussion

We have used the parameters from Table I to obtain
all the results presented below. For such choice of geom-
etry and other parameters, the potential energy profile
resulting from the self-consistent calculations was found
in the form shown in Fig. 1 (for comparison, it also shows
with dashed line the potential energy profile used in the
calculations which do not include the self-consistent pro-
cedure). It demonstrates that the influence of the self-
consistent procedure is observed mainly within the core
of the NW, which is a consequence of the largest charge
density in this region.

TABLE I

Geometrical and material parameters of the single all-
around gated core-shell nanowire.

wire length lw=1200 nm
gate length lg=200 nm

gate–drain distance ld=50 nm
source/drain electrode length le=100 nm

core radius rc=11 nm
insulating shell thickness tis=4 nm

oxide thickness tox=20 nm
oxide relative permittivity εox=120 TiO2 [7]
core relative permittivity εc=13 In0.7Ga0.3As [8]
shell relative permittivity εs=10 In0.7Ga0.3As

temperature T=4 K
Fermi energy EF=100 meV
effective mass m=0.04113 In0.7Ga0.3As

Fig. 1. The potential energy profile along the diam-
eter of the nanowire in the middle of the gate (at
z = 1200 nm), for Vg = 0.2 V (dark, violet lines) and
Vg = 0 V (light, green lines). Dashed line shows the
potential energy profile used in the calculations without
the self-consistent procedure and the inset presents the
only Ue term of the potential energy.

The self-consistent solution of the Poisson–Schrödinger
problem, which includes electric charge accumulated in
the nanowire, leads to the current–voltage characteristics
which is not symmetrical any more, as presented in Fig. 2.

Our calculations prove that for the negative values of
Vds, electric charge gathered in the potential energy well
created by the gate near the drain electrode reduces the
depth of the well. Therefore, it changes overall energy
profile of the device, in a way which reduces the transport
of electrons from the source to the drain. As a result of
this, the absolute value of the negative electronic current
increases. On the other hand, for the positive voltage
Vds, electrons gathered near the source electrode generate
potential barrier which partially blocks transmission and
reduces the output current.

Additionally, we have checked that for Vg = 0 V the
solution is symmetric. It stems from the fact that the
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Fig. 2. The current–voltage characteristics calculated
for the considered CMS–NW with the gate voltage
Vg = 0.2 V (dark, violet lines) and Vg = 0 V (light,
green lines). For comparison, the dashed line shows the
result obtained when the self-consistent procedure was
not used.

nanosystem contains no potential energy well in which
electrons could concentrate. Simultaneously, the poten-
tial energy barriers generated by the electric charge gath-
ered near the electrode of higher energy (from which the
current flows) are also higher. In consequence, the elec-
tronic current is reduced when compared to the case with
neglected accumulation of the electrons.

4. Conclusions

We have performed calculations of the current–voltage
characteristics for the semiconductor nanowires with the
core–multishell structure, applying the self-consistent
procedure to determine the potential energy profile.
The presented results indicate that the energy profile
is strongly modified by the electric charge accumulated
in the core region of the nanowire. In turn, it signif-
icantly affects the transmission coefficient and thereby
we observe reduction of the electronic current through
the considered nanosystem. The contribution of the ac-
cumulated electrons to the potential energy can either
increase or decrease electric current, depending on the
drain–source voltage. It is also affected by the position
of the gate which is located asymmetrically in the prox-
imity of the drain electrode in the considered case.
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