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Quantum Hall State ν = 1/3
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We focus on a certain aspect of trial wave function approach in the fractional quantum Hall effect. We analyze
the role of partition orderings and discuss the possible numerical search for the partition determining the subspace
of the Hilbert space containing a particular quantum Hall wave function. This research is inspired by analogical
properties of certain polynomials which are the object of interest of the symmetric function theory, especially the
Jack polynomials (related to the so-called “Jack states”). Presented method may be used in the search of candidate
trial wave functions. We also justify (in certain cases) diagonalization of the Coulomb repulsion Hamiltonian
restricted to certain subspaces. We focus on the states at filling factor ν = 1/3 in the lowest and second Landau
level.
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1. Introduction

Remarkable behavior of 2D electrons in low tempera-
tures and strong magnetic field known as fractional quan-
tum Hall effect (FQHE) is an actively studied area in
condensed matter physics. Properties of essentially 2D
electrons depend primarily on the Landau level (LL) fill-
ing factor ν (dimensionless ratio of electron and magnetic
flux densities) [1–4]. Unlike in the case of integer quan-
tum Hall effect where ν is a natural number, behavior
of electrons at fractional ν cannot be explained without
considering electron interaction. In fact, particles con-
fined to the lowest Landau level (LLL) have the same
kinetic energy and the total kinetic energy can be sub-
tracted from the Hamiltonian as a constant leaving only
interaction terms.

Among many approaches to FQHE there is one based
on the symmetric function theory. In this approach pro-
posed trial wave functions are developed by mathemati-
cians and usually have a combinatorial interpretation.
Most known family of symmetric polynomials that found
applications in FQHE are Jack polynomials (Jacks) —
Jαλ [5–11]. FQH states related to Jacks are called “Jack
states” and include: the Laughlin series, the Moore–Read
“Pfaffian” state, the Read–Rezayi parafermion ground
states and others [12, 13]. One of the important fea-
tures of Jacks is that only certain coefficients of their
expansion in the monomial basis are nonzero. Answer to
the question which coefficients are nonzero is related to
the structure of partitions and orderings of the partition
space.

We analyze part of symmetric polynomials theory
concerned with orderings of partitions in a context of
physics of the Hall systems. Basis functions for lowest
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Landau level (LLL) quantum Hall states in both sym-
metric (monomial symmetric functions) and antisymmet-
ric (the Slater determinants) are indexed by partitions.
Mathematical study suggests that most natural way of
ordering partitions is to do it according to so-called nat-
ural order. We examine whether such property can be of
use in examination of fractional quantum Hall states.

The paper is organized as follows. In the follow-
ing section a brief introduction to the symmetric func-
tion theory and partitions is given. In Sect. 3 FQH
wave functions significant in our approach are discussed.
In Sect. 4 results are presented.

2. Partitions and basis polynomials

The partition λ [5, 6] is a sequence λ =
(λ1, λ2, . . . , λj , . . . ) of the non negative integers in non
increasing order

λ1 ≥ λ2 ≥ · · · ≥ λj ≥ . . . (1)
Partition can be an infinite sequence, however only a fi-
nite number of elements are nonzero. Usually when the
partition indexes a polynomial, a sequence length cor-
responds to the number of variables of the polynomial.
The nonzero λi are called the parts of λ, the number
of parts is the length of λ and it is denoted by `(λ).
The sum of the parts of λ is called the weight and is
denoted by |λ| =

∑
i λi. There is a natural addition of

partitions
λ+ µ = (λ1, λ2, .., λj , ...) + (µ1, µ2, .., µj , ...) =

(λ1 + µ1, λ2 + µ2, .., λj + µ2, ...). (2)
Feature of partitions that we are especially interested in
are partitions orderings. The natural ordering is defined
as follows:

λ ≥ µ⇔ ∀i : λ1 + λ2 + · · ·+ λi ≥

µ1 + µ2 + · · ·+ µi. (3)
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Then one says λ dominates µ e.g. (3, 1) ≥ (2, 2). The nat-
ural order is not a total order and incomparable par-
titions occurs. For example (4, 1, 1) � (3, 3, 0) and
(4, 1, 1) � (3, 3, 0). A total order consistent with natu-
ral order is the reverse lexicographic order [8]. One writes

λ
R
≥ µ when either λ = µ or the first non-vanishing differ-

ence λi−µi is positive. Considering the previous example

(4, 1, 1)
R
≥ (3, 3, 0). Strict versions of mentioned inequal-

ities occur when both compared partitions do not equal
each other.

Space of quantum Hall wave functions in the lowest
Landau level is spanned by polynomials, in the case
of bosons (fermions) polynomials are symmetric (anti-
symmetric). Standard basis for symmetric polynomials
are monomial symmetric functions (monomials) mλ defi-
ned as:

mλ(x1, x2, . . . , xN ) =

F (λ)
∑
σ∈Sn

x
λσ(1)
1 x

λσ(2)
2 . . . x

λσ(N)

N . (4)

For F (λ) — the normalizing factor, given by

F (λ) =
1

m(λ, 0)!m(λ, 1)! . . .
. (5)

Similarly, basis of antisymmetric polynomials are Slater
determinants slν defined as:

slν(x1, x2, . . . , xN ) =∑
σ∈Sn

sgn(σ)xν1σ(1)x
ν2
σ(2) . . . x

νN
σ(N). (6)

3. Partitions orderings and quantum Hall wave
functions

Algebraic combinatorics brought to our attention that
certain trial FQH wave functions are related to well
known symmetric polynomials like Jack polynomials Jαλ
(parameter α is a real number, λ is a partition) [14–
21]. Among those FQH states are the Laughlin series
ν = 1/r (when r is even one gets bosonic states and for
odd r fermionic states), the Moore–Read state ν = 1/2
in the LL1, “parafermion” sequence ν = k/(k + 2) and
“Gaffnian” wave functions (ν = 2/3 for bosons, ν = 2/5
for fermions) [22, 23].

The Jack polynomials satisfy the following property
that we call being “dominated” by partition: the only
monomials contributing to the Jack polynomial are in-
dexed by partitions dominated by λ

Jαλ = mλ +
∑
µ<λ

vλµ(α)mµ. (7)

Recursion formula for vλµ(α) coefficients has been de-
rived [11]. Property of being “dominated” by partition is
common among symmetric polynomials like in the case of
the Hall–Littlewood polynomials or the Macdonald poly-
nomials P q,tλ [5, 6, 24].

In our method we analyze FQH wave function obtained
numerically by direct diagonalization of the Coulomb re-
pulsion Hamiltonian. For a given numerically obtained

function Ψ we want to find partition that “dominates”
Ψ . We believe this is a first step to propose trial wave
function approximating Ψ . Recognition of such parti-
tion would drastically diminish number of possible can-
didates of trial wave functions among known symmet-
ric polynomials. For example checking all possible Jack
polynomials Jαλ as candidates for 10 particle Laughlin
ν = 1/3 wave function would require checking values of
α for roughly 1.7× 1011 partitions. Moreover, number of
partitions that should be examined grows exponentially
with number of particles. When “dominating” partition is
fixed one can vary α parameter of Jack polynomials and
consider overlaps with FQH function, then propose the
one with highest overlap. Moreover, information that Ψ
is contained in a subspace spanned only by certain poly-
nomials imply that Hamiltonian can be diagonalized in
smaller subspace (for example the Laughlin state 1/r is
contained in the subspace spanned by polynomials dom-
inated by (Nr, (N − 1)r, . . . , r, 0)).

To find “dominating” partition we order coefficients
of wave function in such way that partitions indexing
polynomials are ordered according to the reverse lexi-
cographic order. For example expansion of the Laughlin
wave function for three particles bosonic ν = 1/2 can con-
tain monomials indexed by partitions of weigth six and
length not greater than three. Such partitions can be or-

dered: (2, 2, 2)
R
≤ (3, 2, 1)

R
≤ (3, 3)

R
≤ (4, 1, 1)

R
≤ (4, 2, 0)

R
≤

(5, 1, 0)
R
≤ (6, 0, 0). However not all monomials contribute

Φ
1/2
L =

∏
1≤i<j≤3

(xi − xj)2 = m(4,2,0) − 2m(4,1,1)

−2m(3,3) + 2m(3,2,1) − 6m(2,2,2).

Our goal is to find last partition with nonzero contri-
bution to the wave function. In this case it would be
(4, 2, 0).

Results of our search of dominating partition for the
state ν = 1/3 are presented in a next section.

4. Results

We analyze spinless states of the Coulomb interacting
electrons at ν = 1/3 in LLL and first excited Landau
level (LL1). Since system is fermionic we consider anti-
symmetric polynomials with the Slater determinants ba-
sis. Considered LL1 state corresponds to the physical
filling factor ν = 7/3. Also we vary number of parti-
cles in a search of partition that “dominates” given wave
functions.

Let Ψ be a numerically obtained FQH wave function.
Denote the dimensionality of the Hilbert space as dim,
then there are exactly dim Slater determinants span-
ning this Hilbert space. Now order partitions indexing
those Slater determinants according to the reverse lexi-

cographic order: µ(1)
R
< µ(2)

R
< . . .

R
< µ(dim). For a par-

tition µ(i) we call i its coordination number. Let Ψµ(i)

be a scalar product of Ψ and basis polynomials indexed
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by partition µ(i) (coefficients of Ψ in basis). In order
to find “dominating” partition we consider the following
function:

F (i) =

∑
j≤i |Ψµ(j) |

i
−

∑
j>i |Ψµ(j) |
dim− i

. (8)

For a given i the expression is a difference of average ab-
solute values of coefficients indexed by partitions smaller
or equal to µ(i) and average absolute value of coefficients
bigger in reverse lexicographic order.

Assume partition “dominating” is µ(k), then for l > k
Ψµ(l) should equal zero or be within range of numerical
error. Then

1

l

∑
j≤l

|Ψµ(j) | <
1

k

∑
j≤k

|Ψµ(j) |

as left-hand side is an average of the same elements as
right-hand side and (l − k) zeros. On the other hand,
(dim − l)−1

∑
j>l |Ψµ(j) | ≈ (dim − k)−1

∑
j>k |Ψµ(j) | as

both expressions are averages over elements close to zero.
Thus inequality F (k) > F (l) should occur. Similarly
for l < k first term (minuend) should be the same for
both l and k as it is an average over many elements,
but second term (subtrahend) should increase as we add
positive numbers to the sums of numbers close to zero.
Thus once more F (k) > F (l) should occur. Thus we
search for the maximum in F (i).

TABLE I

Partitions “dominating” FQH ground state wave func-
tions for ν = 1/3 within LLL and LL1 obtained by search-
ing for maximum of F (i). Consecutive columns are: Lan-
dau level, electron number N , dimension of the relevant
Hilbert space, “dominating partition”, coordination num-
ber of partition and sum of squares of the coefficients in-
dexed by partitions smaller than “dominating” which cor-
respond to amount of wave functions confined to the sub-
space spanned by mentioned polynomials. The Coulomb
states have been obtained numerically for the layer with
zero width.

N dim Partition
Coordination

number

Ψ in
spanned
subspace

LLL
4 18 (9, 6, 3, 0) 16 0.9991
5 73 (12, 9, 6, 3, 0) 62 0.9995
6 338 (15, 12, 9, 6, 3, 0) 279 0.9999
7 1656 (18, 15, 12, 9, 6, 3, 0) 1348 0.9990

LL1
4 18 (8, 5, 4, 1) 7 0.4825
5 73 (12, 11, 5, 4, 1) 72 0.9997
6 338 (15, 14, 11, 4, 1, 0) 336 0.9999
7 1656 (18, 17, 16, 8, 3, 1, 0) 1655 0.9999

Overview of Table I and Figs. 1, 2 reveals that dom-
inating partitions for the Coulomb repulsion state ν =
1/3 in LLL seems to be following known pattern of
(3(N − 1), 3(N − 2), . . . , 6, 3, 0). It should be stated that
the Laughlin ν = 1/3 wave function follows exactly the

same pattern, as there is a Jack polynomial indexed by
this partition that equals the Laughlin wave function.
Even though partition (3(N − 1), 3(N − 2), . . . , 6, 3, 0) is
far from being the biggest in reverse lexicographic or-
der (see Fig. 1) most of the wave function is contained
within the Hilbert subspace spanned by polynomials in-
dexed by partitions smaller that “dominating” partition
(more than 0.99). Data for LL1 suggest that there is
no candidate for partition “dominating” this wave func-
tion as partitions from Table I do not follow any clear
pattern. Moreover unlike in the case of LLL maximum
of F (i) is reached for i very close to dim (see Fig. 2).
Thus we conclude that there is little probability of find-
ing trial function describing this state among polynomials
with “dominating” partition like the Jack or Macdonald
polynomials.

Fig. 1. Values of F (i) (top) and absolute values of
Ψµ(i)(i) (bottom) for seven electron wave function of
Coulomb repulsion ground state in LLL. One can notice
that maximum of F (i) in the top picture coincidences
with part of bottom picture where overlap of the wave
function with a polynomial indexed by partition coor-
dination number starts to take very small values.

Fig. 2. Values of F (i) (top) and absolute values of
Ψµ(i)(i) (bottom) for seven electron wave function of
Coulomb repulsion ground state in LL1.
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