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In the Weyl semimetals, a recently discovered class of bulk materials, inverted band gap closes in the first
Brillouin zone at topologically protected points of degeneracy called the Weyl nodes. By using the Chern number
formalism it is possible to assign to each of the nodes an integer topological charge Q. While around typical Weyl
points the energy disperses linearly in all three directions, double-Weyl nodes (with |Q| = 2) exhibit quadratic
dispersion in two directions and linear in the third one. We use a simple 2-band tight-binding lattice model to
investigate the dispersion of the Landau levels in the presence of quantizing magnetic field in the vicinity of a
double-Weyl node. In the long wavelength limit we obtain analytically the expected presence of two chiral levels.
In addition, we find numerous level crossings between the non-chiral Landau levels and the chiral ones, a feature
which is distinct from the single node case. Calculations for a finite-size sample, both with periodic and hard-wall
boundary conditions (the latter corresponding to slab geometry), show that the two chiral levels hybridize in the
conduction band with the two lowest non-chiral Landau levels. In the case of slab geometry these four levels are
responsible for the formation of a protected surface state.
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1. Introduction

Theoretical interest in topological semimetals dates
back to early 80s, where such a system was introduced
in the context of high-energy physics [1]. The low en-
ergy theory of a topological semimetal describes two val-
leys in the band structure, each corresponding to a Weyl
fermion. One may envision such a system as the 3D gen-
eralization of well-known two Dirac electron valleys in
graphene. General arguments guarantee [1] the existence
of at least two valleys of the Weyl fermions in any lattice
representation of this system. The nodal points, where
the gap closes, are topologically protected from gapping
under any smooth perturbation of the lattice model. The
quantifying characteristic of a single node topology is the
Chern number |Q| = 1, calculated as an integral of the
Berry curvature on a small sphere containing the node.

The recent renewal of interest in topological semimet-
als has begun with the identification [2] of physically mea-
surable consequences of topological nature of the nodal
states. The so-called chiral anomaly arises when the Weyl
fermions are placed in the external magnetic field. Al-
though a full theory of quantum transport [3, 4] due to
the chiral anomaly is still under development, one can
form a basic physical intuition by considering the Lan-
dau levels of the Weyl fermions. The characteristic 0th
Landau level develops when the external magnetic field
is applied along the axis connecting the nodes (kz in our
notation). This level is called chiral as it is characterized
by a constant group velocity in the vicinity of a single
node. The net physical current in a crystal is conserved,
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as the group velocity of the 0th Landau level has opposite
signs for the two nodes.

The purpose of the present contribution is to investi-
gate the Landau level structure in a model of topological
semimetal with a higher topological charge Q = 2. Topo-
logical semimetals with this property has been proposed
theoretically [5, 6] and by now some realistic systems are
considered [7]. Here we limit ourselves to a simple lattice
formulation, which is equivalent to the one proposed in
Ref. [6]. To our knowledge the Landau level quantization
in such a model has not been considered so far.

2. The model

We consider a simple 2-band tight-binding Hamilto-
nian, which is expressed in the diagonal form in the crys-
tal momenta as follows:

H(k) = h(k) · σ, (1)
with

hx = 2t′(cos ky − cos kx),

hy = t′ sin kx sin ky,

hz = µ− t cos kx − t cos ky − 2t̃ cos kz, (2)
where t′, t, and t̃ are the hopping parameters and µ is
half the energy difference between levels on a single lat-
tice site. The energy dispersion relations of the conduc-
tion (denoted by +) and valence (−) bands are given
by E± = ±|h(k)|, which follows from the fact that
H2(k) = h2(k) due to the anticommutation relations
of the Pauli matrices {σi, σj} = 2δij . If the inequality
|2t − 2t̃| < µ < 2t̃ + 2t is satisfied the bands are degen-
erate at exactly two points in the first Brillouin zone,
which we denote by kW = (0, 0,± arccos µ−2t

2t̃
). Around

these points the bands disperse linearly along the z axis
with ∂E+/∂kz =

√
(2t̃)2 − (µ− 2t)2 and quadratically
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in the x and y directions with ∂2E+/∂k
2
x = ∂2E+/∂k

2
y =√

t2 + 4t′2.
To show that these band crossings are double-Weyl

nodes we calculate the Chern number Q on small spheres
enclosing each of the degeneracy points in the k space.
Let us first note that in the case of 2-band models it is
easier to calculate Q in the h space, that is in the three-
dimensional space of traceless Hermitian 2× 2 matrices.
The Berry curvature is defined by

Ω (n)(k) = i∇k × 〈un(k)|∇k|un(k)〉 , (3)
where un(k) denotes the wave function of two bands
n = ±. We can express the Berry curvature in the h
space, obtaining a simple inverse-square form

Ω (±)(h) = ∓ h

2|h|3
. (4)

The integral over a sphere S = {k : |k − kW| = kS}:

Q(n) = − 1

2π

∮
S

Ω (n)(k)dS, (5)

which defines the Chern number, is now easily evaluated
by changing variables according to Eq. (2), since the form
of the integrand (4) enables us to use the Gauss flux the-
orem. To obtain the integer value of Q(n) it is therefore
enough to consider how many times and in which direc-
tion the parametric surface Sh = {h(k) : |k−kW| = kS}
winds over the monopole at h = 0.

Expanded around ±kW the Hamiltonian becomes
hx ≈ t′(k2x − k2y),

hy ≈ t′kxky,

hz ≈ ±
√
(2t̃)2 − (µ− 2t)2(kz ∓ kzW). (6)

If we introduce spherical coordinates (k, θ, φ) around the
Weyl node ±kW:

kz ∓ kzW = k cos θ, kx ± iky = k sin θe± iφ, (7)
we get the parametric surface

hx = t′k2 sin2 θ cos (2φ),

hy = t′k2 sin2 θ sin (2φ),

hz = ±
√
(2t̃)2 − (µ− 2t)2k cos θ, (8)

which clearly winds twice over h = 0 in opposite direc-
tions for each of the points.

By a direct calculation we have confirmed that the
Chern number at the kz = 0 plane is |Q| = 2 while the
kz = π plane has Q = 0. Thus we can conclude that in
a slab truncated along [100] plane the topologically pro-
tected surface states should appear between −kzW and
+kzW.

3. Landau levels
We use two methods to calculate the Landau levels

in the magnetic field parallel to the kz axis, that is the
axis on which the double-Weyl nodes appear. In the first
method we work with the continuous model in the low-
est non-zero order of the Taylor expansion around the
kz axis and introduce the usual raising and lowering of

the Landau level operators. The second method incor-
porates the Peierls substitition on a lattice model with
either periodic or hard-wall boundary conditions.

For the analytical derivation we pick the vector po-
tential in the axial gauge A(r) = (−By/2, Bx/2, 0) and
substitute the electron quasimomentum
k→ k′ = k +A, (9)

where we put |e| = 1 and ~ = 1. Since
[k′y, k

′
x] = iB, (10)

which resembles the canonical commutation relation
[x, p] = i~, we are able to introduce the raising and low-
ering operators in an analogy to a quantum harmonic
oscillator

a =
k′x − ik′y√

2B
, a† =

k′x + ik′y√
2B

(11)

(without loss of generality we pick B > 0). Our Hamil-
tonian (2) can be expanded around the kz axis, which
gives

hz ≈ µ− 2t+
t

2
(k2x + k2y)− 2t̃ cos kz, (12)

with hx and hy the same as in Eq. (6). After substi-
tution (9) the Hamiltonian expressed with the opera-
tors (11) becomes

H(kz) = 2t′B(a2σ+ + a†
2
σ−)

+tB
(
a†a+ 1

2

)
σz + f(kz)σz, (13)

where σ± = 1
2 (σx ± iσy) and f(kz) = µ − 2t − 2t̃ cos kz.

Eigenstates of the Hamiltonian can be expressed in the
basis {|n,±〉} where n = 0, 1, 2, . . . is the Landau level
of a free particle and ± denotes the eigenstate of σz. By
a straightforward calculation we obtain that |0,−〉 and
|1,−〉 are eigenstates with dispersions

E0(kz) = −
tB

2
− f(kz),

E1(kz) = −
3tB

2
− f(kz). (14)

These are the peculiar chiral Landau levels. Other eigen-
values can be calculated by making use of the fact that
the Hamiltonian splits into blocks spanned by the states
{|n− 2,+〉 , |n,−〉} (for n = 2, 3, 4, . . .), which can be di-
agonalized to yield pairs of Landau levels

E±n (kz) = −tB

±

√[
tB

(
n− 1

2

)
+ f(kz)

]2
+ 4t′2B2n(n− 1). (15)

The Landau levels obtained in this way are plotted in
Fig. 1 on the left hand side.

For the second method we discretize our tight binding
Hamiltonian in the x direction (putting a unit lattice
constant) to get

H = U
∑
x

|x〉 〈x|+ T
∑
x

|x− 1〉 〈x|

+T †
∑
x

|x+ 1〉 〈x| , (16)
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where

U=

(
µ−t cos ky−2t̃ cos kz 2t′ cos ky

2t′ cos ky −µ+t cos ky+2t̃ cos kz

)
, (17)

T =

(
− t

2 t′
(
−1− 1

2 sin ky
)

t′
(
−1+ 1

2 sin ky
)

t
2

)
, (18)

and x denotes lattice sites labeling (100) surfaces. This
time we work in the Landau gauge with A(r) =
(0, Bx, 0). The Peierls substitution applied to such a
Hamiltonian reduces to substituting ky → ky + Bx in
U matrices belonging to the node at the position x and
ky → ky +B(x+ 1/2) in T matrices describing the hop-
ping between x-th and (x+ 1)-th nodes.

In order to reproduce results obtained in the con-
tinuous model we consider a finite crystal of length
Nx with periodic boundary conditions (PBC), so that
〈Nx − 1|H|0〉 = T , 〈0|H|Nx − 1〉 = T † (lattice sites are
numbered x = 0, 1, . . . , Nx − 1). The external mag-
netic field has to be commensurate with the sample’s
length and may assume only a discrete set of values
B = 2mπ/Nx with m ∈ Z.

The Hamiltonian (16) with 〈Nx − 1|H|0〉 =
〈0|H|Nx − 1〉 = 0, that is with hard-wall boundary
conditions applied, will serve us as a model of double-
Weyl semimetal truncated in the x direction (slab
geometry). It should be noted that in this case the
Landau levels are not degenerate in ky, contrary to the
case of crystal with PBC.

In Fig. 1 we plot the comparison of results of the Lan-
dau levels dispersions along the kz axis for the continuous
model, the discrete model with PBC and the latter with
hard-wall BC. The plots show only the vicinity of a sin-
gle double-Weyl node. All figures are plotted with the
parameters µ = 2, t′ = 0.8, t = 1, t̃ = 0.4, sample width
Nx = 500, and magnetic field B = 2π/500. This results
in the magnetic length `B = 1/

√
B ≈ 9 lattice constants,

which is ca. 50 times lower than the slab’s width. There-
fore the finite size effects should be less significant than
the Landau quantization.

Fig. 1. Landau level dispersions along the kz axis. Left
to right: analytical calculations in the long wavelength
limit (colored lines are the chiral levels), calculations on
a lattice with PBC, calculations on a lattice with hard-
wall BC.

Results in the long wavelength limit show the pres-
ence of two topologically protected chiral Landau levels.
These and other dispersion lines cross with each other
numerous times between −kzW and kzW, that is in the
topologically nontrivial region of the Brillouin zone. Ex-
act numerical results for a translationally invariant, but
finite sample (with PBC) depart significantly from the
long wavelength limit analysis. The difference persists
for a finer lattice and bigger sample, and also in a wide
range of the model parameters. We find that the chi-
ral levels first cross the two lowest Landau levels in the
conduction band, and then hybridize with the next two
levels by an avoided crossing. Under close inspection we
find that this scenario repeats for the crossings with the
four higher Landau levels, which can be seen in Fig. 2.
Remarakably, the crossing–avoided crossing sequence is
the same for Landau levels calculated in slab geometry,
as illustrated in the third part in Fig. 1. The lowest state
that forms between −kzW and kzW is the surface state,
thus it has to be of topological origin. The exact con-
nection between the hybridization of the lowest Landau
levels and formation of the surface state in our case is not
yet clear. However, it is a feature distinct from a single
node Q = 1 Weyl semimetal.

Fig. 2. Closed-up Landau level dispersions for a lat-
tice with PBC (left-hand side) and hard-wall BC (right-
hand side), demonstrating the hybridization of four of
the lowest Landau levels.

We conclude that the topological nature of the chiral
states can have profound consequences when those states
cross the other, non-chiral Landau levels. The interplay
of full crossing–anticrossing may be used as an indica-
tor of the presence of chiral states in future experiments
e.g. optical spectra of a clean, thin slab of double-Weyl
semimetal material.
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