Elastic-Plastic Transition in MBE-Grown GaSb
Semiconducting Crystal Examined by Nanoindentation

A. Majtykaa,∗, M. Trębalab, A. Tukiainenc, W. Borgiela,d, J. Räisänенc and R. Nowaka

aNordic Hysitron Laboratory, Department of Materials Science and Engineering, Aalto University, 00076 Aalto, Finland
bOptoelectronics Research Centre, Tampere University of Technology, 33101 Tampere, Finland
cInstitute of Materials Science, University of Silesia, 75 Pulku Piechoty 1, 45-500 Chorzów, Poland
dInstitute of Physics, University of Silesia, 75 Pulku Piechoty 1, 45-500 Chorzów, Poland

The present paper concerns the elastic-plastic nanoindentation of Te-doped GaSb crystals grown by molecular beam epitaxy on the n-type of GaSb substrate. The conventional analysis of nanoindentation data obtained with a sharp triangular (Berkovich) and spherical tip revealed the elastic modulus ($E = 83.07 \pm 1.78$ GPa), hardness ($H = 5.19 \pm 0.25$ GPa) and "true hardness" ($H_T = 5.73 \pm 0.04$ GPa). The registered pop-in event indicates the elastic–plastic transition in GaSb crystal points towards the corresponding yield strength ($\sigma_Y = 3.8 \pm 0.1$ GPa). The origin of incipient plasticity in GaSb crystal is discussed in terms of elastic-plastic deformation energy concept.

DOI: 10.12693/APhysPolA.130.1131
PACS/topics: 81.40.Jj, 62.20.F–, 81.15.Hi, 81.05.Ea

1. Introduction

The GaSb low band-gap crystal, has attracted considerable interest among the III–V compound semiconductors due to its potential applications for infrared detectors (the Schottky barrier diodes) [1], infrared LEDs [2], thermophotovoltaic generators [3], or spintronics devices [4]. It has turned out to be important candidate for applications in tunnel field-effect transistor, due to its potential applications for infrared detectors [4]. It has turned out to be important candidate for applications in tunnel field-effect transistor, due to its potential applications for infrared detectors [4].

The nanoindentation experiments were performed using Hysitron Triboindenter TI 950 equipped with either the sharp Berkovich (nominal radius $R = 500$ nm) or spherical ($R = 1$ μm) diamond tip. The measurements were carried out in a load-control-mode with maximum indentation load P_{max} varied from 100 to 5000 μN. The selected load time (180 s) allowing us to observe the discontinuities (pop-in events) on a loading part of the load-displacement (P–h) curve.

3. Results and discussion

The typical P–h curves registered during the indentation of the sharp-tip are smooth and repeatable, which indicates the homogeneity of our sample (Fig. 1a).

Based on the obtained results we determined the conventional Mayer hardness (H) and Young modulus (E) (see Fig. 1b) of the examined material, according to the Oliver and Pharr method [10]:

\[H = \frac{P}{A} \left(1 - \nu_s^2 \right) E = \frac{1}{E_{\text{eff}}} \left(1 - \nu_s^2 \right) E_i, \]

\[E_{\text{eff}} = \frac{\sqrt{\pi} S}{2\beta \sqrt{A}}, \]

where P, A, S, E_i, E_{eff}, ν_s, and β define the indentation load, contact area, unloading stiffness, indenter elastic modulus, effective Young modulus, material Poisson ratio, the Poisson ratio of diamond tip and constant dependent on the Berkovich tip geometry — 1.034 [11], respectively. The calculated values of $H = 5.19 \pm 0.25$ GPa and $E = 83.07 \pm 1.78$ GPa. The homogeneity of our sample is indicated by the absence of discontinuities (pop-in events) on the load-displacement (P–h) curve.
E = 83.07 ± 1.78 GPa (see Fig. 1b) are consistent with the earlier data that were obtained by means of micro-indentation equipment [12].

Our further procedure of the collected indentation data (Fig. 1a) led us to estimate the energy U_r (see Eq. (2)) consumed for irreversible nanodeformation at different P_{max} values following Sakai and Nowak [13, 14]:

$$U_r = \int_0^{h_p} A_p(h)h^2\,dh,$$

where A_p corresponds to the coefficient describing the resistance of a solid to plastic deformation and h_p stays for indentation depth limiting the integration interval. The “true hardness” (H_T) of our material was obtained from Eq. (3) describing $U_r - P_{\text{max}}^{3/2}$ relationship [13, 14]:

$$U_r = \frac{1}{3} \alpha_0^{-\frac{2}{3}} \cot(\psi)H_T^{\frac{1}{3}} P_{\text{max}}^{\frac{5}{3}},$$

where $\alpha_0 = 3\sqrt{3}$, $\psi = 70.7^\circ$ stand for geometry of the indenter (for further details refer to Ref. [15]). The obtained $H_T = 5.73 \pm 0.04$ GPa has a physical sense, in contrast to depth-dependent values of hardness that does not constitute any material constant. Moreover, the selected plot (Fig. 1c) confirms the linear $U_r - P_{\text{max}}^{3/2}$ relationship of our data with satisfactory fit (coefficient of determination 0.99985) that proves the EPI applies to our MBE-grown GaSb crystal.

Employing the plot of the $P^{2/3} - h$ relationship (Fig. 2a) and equation:

$$P^{\frac{2}{3}} = \left(\frac{4}{3} E_{\text{eff}} R^{\frac{2}{3}}\right)^{\frac{2}{3}} h,$$

valid for spherical indentation, we detected the exact location of the point indicating the end of elastic deformation that concerns the critical load $P_c = 1290$ µN. Furthermore, employing relationship between the contact stress σ, indenter load P, contact area A, indenter radius R, and contact radius a:}

$$\sigma = \frac{P}{A}, \quad A = \pi Rh, \quad a = \sqrt{Rh},$$

we were able to calculate the yield strength $\sigma_y = P_c/A_c = 3.8$ GPa (A_c — critical contact area) at the onset of elastic-plastic transition of GaSb crystal (see Fig. 2b).

Our examination of the pop-in that based on spherical indentation data recorded for variety of the maximum loads P_{max} levels (-specify 100–5000 µN) makes us to claim that we determined the moment when the elastic-plastic transition occurs (see Fig. 2a). The detected singularity on the loading part of $P-h$ curves for GaSb may stem from different structural effects such as phase transition to another crystalline structure (similarly to zinc-blende \rightarrow rock-salt transition reported for GaAs [7]) or defects activity. Indeed, similarly to GaAs the phase transition was observed in GaSb at 4.05 GPa [18], and it may involve as well the vacancy nucleation processes [19].

4. Conclusions

In sum, we report the results of nanomechanical examination of the MBE-deposited GaSb-crystal thin film. The elastic modulus and hardness of the material in question were determined. The energy of irreversible surface
Fig. 2. The results of the spherical indentation in GaSb. The plastic response for the load higher than critical value (pop-in effect) marking the limit of the elastic region of nanodeformed GaSb (a), and provide technologically applicable stress–strain relationship (b).

deformation has been estimated from $P-h$ curves and used to determine the “true hardness” of our material. We found the yield strength of GaSb to be equal to 3.8 GPa. Moreover, the spherical indentation revealed the singularity on the load-depth curves (pop-in event) that marks abrupt transition from elastic to plastic behavior. We believe it is caused either by the phase-transitions or by defect activity.

Our results provide a new insight into the mechanical response of the GaSb-crystal, the issue being of interest for fabrication and testing of contemporary semiconducting nanomaterials including GaSb.

Acknowledgments

A.M., M.T., A.T., D.C., W.B., J.R., and R.N. thank the Academy of Finland for the support through the Research Consortium PROPER within the Finnish Research Program — Programable Materials — OMA. D.C. acknowledges the National Science Center of Poland under grant No. DEC-2012/05/B/ST-8/02945. The authors also wish to thank Mr. Riku Koskinen for preparation of the GaSb samples.

References