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The program Jana2006 allows the solution and refinement of regular, twinned, modulated, and composite
structures against different diffraction data sets. Recently a new option for solving and refining magnetic structures
from powder and single crystal neutron diffraction data has been developed.

DOI: 10.12693/APhysPolA.130.848
PACS/topics: 75.25.–j, 75.30.–m, 75.10.–b

1. Introduction

Structure analysis of standard crystals is becoming
more and more a routine task due to considerable im-
provements in equipments complemented by the use of
modern methods such as charge flipping [1]. Over the
last few years, similar progress has been achieved for
the solution and refinement of modulated and compos-
ite crystals [2].

However, new materials exhibiting unique phase tran-
sitions, connected for example to magnetism, magneto-
or ferroelectricity, or superconductivity, often require
very detailed structure analysis in their fundamental
ground-states and when submitted to multi-extreme con-
ditions. For such cases, structure analysis is still a chal-
lenging swiftly developing field.

Phase transitions in magnetic materials lead to the or-
dering of magnetic moments and/or development of ferro-
electric moments in the structure. To study the structure
of magnetic crystals neutron diffraction data must be
used. The solution and refinement of magnetic structures
is usually made through the decomposition of the mag-
netic configuration space into basis modes, which trans-
form according to the different physically irreducible rep-
resentations (irreps) of the space group of the paramag-
netic phase [3]. Recently, it was shown that the direct use
of the Shubnikov (magnetic) space and superspace groups
facilitates the work with non-modulated (k = 0) as well
as with modulated magnetic structures (k 6= 0) and sim-
plifies the algorithms for handling the diffraction data of
magnetic structures [4]. When analyzing incommensu-
rately modulated magnetic structures (e.g, multiferroic
phases) this approach might be especially valuable [5].

2. The structure factor formula
as used in Jana2006 [2]

For k = 0 the three-dimensional periodic magnetiza-
tion density ρmag (r) can be expanded into a Fourier se-
ries with coefficients Fmag (H), the so-called magnetic
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structure factors
ρmag (r) =

∑
H

Fmag (H) exp (−2π iH · r) . (1)

The summation runs over all the diffraction vectorsH =
3∑
i=1

Hia
∗
i in a lattice of dimension i and lattice vector

a∗i. The magnetization density can be written as a sum
of the individual contributions ρν,mag (r) of all the mag-
netic atoms in the structure

ρmag (r) =
∑
n

Nmag∑
ν=1

ρν,mag (r) δ (r − rν − n) . (2)

The first summation runs over the unit cells in the crys-

tal, n =
3∑
i=1

niai, and the second sum runs over the

magnetic atoms in the reference cell. Then the magnetic
structure factor Fmag (H) is directly related to the indi-
vidual atomic magnetic moments Mν according to the
equation
Fmag (H) =

p

Nmag∑
ν=1

fν (|H|)MνTν (H) exp (2π iH · rν) , (3)

where fν , Tν (H) and rν represent the magnetic form fac-
tor, the ADP factors and position of the atom ν in the
unit cell, respectively. The coefficient p = reγ/2 converts
the magnetic structure factor from the Bohr magnetons
to the neutron scattering length in barns (10−24 cm2) in
order to unify the scales.

In the case of k 6= 0, the general theory for describing
modulated structures in the superspace can be used [6].
Then the magnetic moment of an individual atom can be
expanded into a Fourier series

Mν (k · rν) =Mν,0 +
∑
m

[Mν,ms sin (2πmk · rν)

+Mν,mc cos (2πmk · rν)] , (4)
where Mν0, Mν,ms and Mν,mc are the absolute term,
amplitude of the sine term and amplitude of the cosine
term, respectively. The kinematical theory of diffraction
gives the following expression for the main and satellite
magnetic structure factors:
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Fmag (H) =

p

Nmag∑
ν=1

fν (|H|)Mν,0Tν (H) exp (2π iH · rν) ,

Fmag (H ±mk) = p

Nmag∑
ν=1

fν (|H ±mk|)Tν (H ±mk)

×Mν,mc ± iMν,ms

2
exp 2π iH · rν . (5)

In the case of magnetic modulation not coupled with
positional modulation, the calculation of the magnetic
structure factors can be made analytically, and each n-
th harmonic in the Fourier expansion (4) leads to satellite
diffraction of the n-th order. On the other hand, in the
case that a magnetic modulation is combined with a po-
sitional and/or occupational modulation, an integration
method over internal space has to be applied [2].

3. Magnetic space and superspace groups

Magnetic (Shubnikov) space groups are composed of
the nuclear symmetry elements combined with the time
inversion operation [7]. Any magnetic symmetry opera-
tion can be written in the form

Ŝ = (R, θ |s ) , (6)
where R, θ = ±1 and s are the rotation matrix (proper
or improper), time inversion operator and the transla-
tion part of the symmetry operation, respectively. Fur-
ther, we shall concentrate mainly on the so-called proper
magnetic groups [8] which do not contain the pure time
inversion element Ŝ = (E,−1 |0) thus allowing the order-
ing of magnetic moments. The magnetic moment of the
atom τ , which is related to the atom ν by the equation
rτ = Ŝrν = Rrν + s, is then
Mτ = ŜMτ = θ det (R)RMν . (7)

The concept of magnetic space group has been general-
ized to magnetic modulated structures [9] by applying
the superspace theory [6, 10].

The magnetic space and superspace groups give a
phenomenological description of magnetic structures.
The symmetry operations of a magnetic group define
a unique way to calculate the magnetic moments of all
atoms of the magnetic orbit from one representative atom
of the same orbit. This allows a considerable simplifica-
tion of the formulae (3) and (5) in which the summations
are reduced only to symmetrically independent magnetic
atoms. Another important point is that the application
of symmetry in the reciprocal space can be used for merg-
ing symmetrically equivalent reflections making the re-
finement process more stable.

Similarly to regular structures, the magnetic space and
superspace groups can be used to derive the system-
atically absent reflections. As the magnetic structure
factor is a vector, three equations are needed to fulfill
the extinction conditions and, thus, systematic extinc-
tions are less common. However, they can be very help-
ful during the process of selection of the proper model

of magnetic ordering. A great help in practical stud-
ies of magnetic structures is the Crystallographic Bilbao
Server [11], namely its program MAGNEXT [12].

4. Representation analysis

Symmetry considerations on the determination of mag-
netic structures were first given by Alexander [13],
who used irreducible representations (irrep) of the non-
magnetic space group (nuclear space group) to find the
corresponding magnetic configurations. Later, the repre-
sentation analysis was successfully applied to a series of
magnetic structures by Bertaut [3], and since that time
it has been used as a basic method for the description
and refinement of magnetic structures. To describe the
magnetic structure, coefficients of basis functions belong-
ing to a single selected irrep, defined in a carrier space
made of the individual magnetic moments, are used in-
stead of the individual magnetic moments themselves.
Such an approach is closely connected with the assump-
tion that the magnetic ordering is a phase transition of
second order according to the Landau theory. Further-
more, the representation analysis allows combining dif-
ferent irreps for distinct magnetic atoms in the structure
(see e.g. TbFeO3 [14]).

A more consistent approach starts from the magnetic
space group of the paramagnetic phase and its irreducible
representations. The ordering of the magnetic moments
can be characterized by kernels and epikernels [15] of
those irreps (these subgroups can be also referred as
isotropy subgroups [16]).

In connection to this, we would like to point out that
irreducible co-representations introduced by Wigner [17]
represent a common and effective mean for handling in-
commensurate structures that allows not only to pre-
dict possible orderings of magnetic moments, but also
other characteristics such as magnetically-driven ferro-
electricity [18]. The co-representations of the paramag-
netic space group were used in the analysis of multiferroic
systems [19, 20].

5. Magnetic option in Jana2006

The workflow diagram shows the main procedure for
the solution and refinement of magnetic structures in
Jana2006 [2].
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In the first step, the information about the nuclear
structure together with the diffraction input is read and
transformed into internal formats of Jana. Then the pro-
gram makes a representation analysis and offers the user
the selection of the magnetic spaces or superspace groups
for testing. This can be done by simulation of the powder
profile for powder data and/or visualization by a graphic
program, e.g. Vesta [21]. The whole procedure can be
made by the user, step by step, or with the help of a
special wizard program based on the flux diagram.

6. Example of a refined magnetic structure

Neutron diffraction was performed on a single-
crystal of the compound Dy3Ru4Al12 due to its com-
plex electronic properties linked to geometrical frustra-
tion [22, 23]. Dy3Ru4Al12 displays a first-order mag-
netic phase transition from a magnetically disordered
into an antiferromagnetic state at the Néel temperature
TN = 7 K. It crystallizes in a hexagonal crystal struc-
ture of the Gd3Ru4Al12 type (space group P63/mmc).
The Dy atoms occupy one crystallographic site (6h) and
form triangular (distorted kagome) nets parallel to the
ab plane. The Ru atoms are located in two Wyckoff po-
sitions (6g and 2a) and Al in four (12k, 6h, 4f and 2b).
Two-dimensional hkl cuts (hkl, perpendicular to [001])
show the presence of magnetic satellites with propaga-
tion vector (1/2,0,1/2) and its equivalent ones (Fig. 1).

Fig. 1. Two-and-half-dimensional hkl cuts showing the
nuclear reflections (l = 0) and the magnetic satellites
(l = 1). The reciprocal axes are shown in the center of
the pattern together with the monoclinic unit cell used
to solve the magnetic structure.

The solution of the magnetic structure providing the
best fit of the experimental data was obtained within the
monoclinic centro-symmetric Shubnikov group Cc2/c.
The resulting model for the magnetic structure is pre-
sented in Fig. 2, where the Dy atoms are shown in
an orthorhombic unit cell. The magnetic structure of
Dy3Ru4Al12 is non-collinear, with magnetic moments not
confined to any high-symmetry crystallographic direc-
tions, although the moments have its largest component
projected onto the c axis. Each Dy atom carries an or-
dered magnetic moment, and the magnetic structure re-
finement yielded close values of the magnetic moment at
T = 1.5 K, nearly 10 µB, for all Dy atoms.

Fig. 2. The magnetic structure of the Dy3Ru4Al12
compound in the orthorhombic space group Cc2/c.
Only the Dy atoms are shown for the sake of clarity.
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