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Fitting the Long-Range Order of a Decagonal Quasicrystal
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The generalized Penrose tiling is an infinite set of decagonal tilings. It is constructed with the same rhombs
(thick and thin) as the conventional Penrose tiling, but its long-range order depends on the so-called shift parameter
s ∈ 〈0, 1). The formula for structure factor, calculated within the average unit cell approach, works in physical
space only and is directly dependent on the s parameter. It allows to straightforwardly change the long-range
order of the refined structure just by changing the s parameter and keeping the tile decoration unchanged. The
possibility and viability of using the shift as one of the refinement parameters during structure refinement was
tested for a numerically generated simple binary decagonal quasicrystal.
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1. Introduction

The structure analysis of decagonal quasicrystals
(DQCs) is still a great challenge. One of the impor-
tant problems is determining the long-range order (LRO)
of the structure, i.e. the right kind of decagonal tiling.
Current models, namely, the higher dimensional (nD)
approach [1, 2] and the average unit cell (AUC) ap-
proach [3–6] share common problem, they assume the
type of tiling during first step of model building. A vast
majority of (if not all) models of DQCs in the litera-
ture are based on the Penrose mutual local derivabil-
ity (PMLD) class of tilings [7] e.g. pentagonal Penrose
tiling, rhombic Penrose tiling, hexagon–star–boat tiling.
The LRO for all PMLD class tilings is the same and if
the structure is described by one tiling from the PMLD
class it can also be described by any other tiling from
this class. This gives us the possibility to choose the
tiling that is most convenient to describe structural de-
tails. Even though PMLD class of tilings was successfully
used to describe various DQC phases, it is still an open
question if PMLD class tilings really describe their LRO
in the best way.

PT can be easily generalized to the so-called gener-
alized Penrose tiling (GPT) [8, 9] which, in principle,
does not belong to the PMLD class. The unit tiles of
GPT are the same two Penrose rhombs as in PT, hoverer
the matching rules are different. This results in different
possible tile arrangement. The kind of obtained tiling
depends on a certain continuous parameter called shift
s ∈ 〈0, 1). Therefore there is an infinite set of different
GPTs for different s values, and each of them has a dif-
ferent LRO. The diffraction properties of GPT have been
studied before, e.g. [10], also the structure factor of ar-
bitrarily decorated GPT in the AUC approach has been
calculated [6, 11]. The formula works in physical space
only and is a function of the parameter s. This allows
to change the LRO of the structural model with fixed
unit tile decorations. The goal of this paper is to show
how the GPT concept can be practically applied for the
refinement process of DQCs.

2. Structure factor

As a base for our calculation we will use the structure
factor of an arbitrarily decorated GPT. The derivation
of Eq. (1) has been shown in [6, 11], from where we will
rewrite it
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First sum runs over types of rhombuses (thick and thin),
second sum runs over possible rhombs families, third sum
over possible orientations of a given unit and forth sum
run over atoms decorating a given unit in a given orien-
tation. kn,m is parallel component of reciprocal lattice
vector given by indices of n1,n2,m1,m2. rTθj is the posi-
tion of the j-th atom in a given structure unit in a given
orientation, f ja — the atomic scattering factor of a given
atom and pj is the fraction of an atom inside the struc-
ture unit.

The formula in Eq. (1) requires, however, minor mod-
ifications if we want to use it in structure refinement
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algorithm. First, we need to add the Debye–Waller
factors (also called the atomic displacement parameter,
ADP), both phononic (Eq. (2)) and phasonic (Eq. (3)):
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The ADP is related to the thermal vibrations of the
atoms: bxy is proportional to the squared average ampli-
tude of the thermal vibrations in the quasiperiodic plane
and bzz is proportional to the squared average amplitude
of the thermal vibrations in the periodic direction.
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(
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is related to the phasonic flips, which are typ-

ical for quasicrystalline structures [12]. The parameter is
characteristic for the whole structure and is proportional
to the average amplitude of phason flips squared.

The values of atomic scattering factors were calculated
using Eq. (4). The parameter values aibic were taken
from crystallographic tables [13] for the atoms used in
the simulation
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The final formula of structure factor that is used in the
refinement algorithm is presented in Eq. (5):
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3. Shift refinement

To test the viability of refinement of the shift parame-
ter, we simulated a simple binary quasicrystal with arbi-
trary decoration. It was built using two atomic species:
Al (blue dots) and Rh (red dots). The building units are
shown in Fig. 1. Formula (5) was used to calculate a ref-
erence diffraction pattern (shift parameter of GPT was
equal to s = 0.234) (Fig. 2).

After obtaining the reference diffraction pattern, which
was used as an “experimental data set” we run two dif-
ferent tests. First test was to prepare plot of R-factor
(Eq. (6)) as function of shift, to see if and how the R-
factor changes with changing s. The results are presented
in Fig. 3. We can see two minima, one very strong,
corresponding to the exact value of the shift parameter
(s = 0.234) in the reference structure. The second one is
located symmetrically at position s = 0.766. It is much
weaker due to lack of symmetry of the decoration around
the center of the thick rhomb. If a symmetric decoration

Fig. 1. Building units, with decoration used in refine-
ment procedure.

Fig. 2. Diffraction pattern used as reference in refine-
ment procedure, crosses indicate position of peaks that
were too small for a circle to be drawn.

Fig. 3. R-factor in function of shift, calculated for the
GPT s = 0.234 with simple decoration.

Fig. 4. As in Fig. 3, but with no decoration.
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was used, both minima would be equally strong (Fig. 4):
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Second test was to run the refinement procedure using
shift as one of the fit parameters. It is relatively easy
to find the correct shift value, even in case where the
starting values of other parameters (e.g. atom positions,
or ADP factors) did not match exactly the ones in the
reference structure. However we have to remember that
there are two possible solutions and avoid getting stuck
in the weaker minimum. We also noticed that while it
is possible to run simultaneously refinement of shift with
other parameters and obtaining correct values, it is rec-
ommended to run shift parameter refinement separately
from the rest, as it increases the required number of it-
erations tremendously.

4. Conclusions

We have shown an example of a structure refinement
that used the shift as one of the fit parameters. The
refinement was done for a simple binary decagonal qua-
sicrystal simulated numerically. We have shown that two
different minima can be found, usually one being much
stronger than the other. The difference in the minimum’s
strength is related to the symmetry of the decoration.
After successful test of the viability of using the shift in
refinement for simple quasicrystal, we believe it is possi-
ble to run such procedure for a real quasicrystal. Using
one of preliminary solved and refined structures, like Al–
Cu–Rh DQC [14], would be good starting point for mak-
ing an attempt to find the right GPT for this structure,
which would imply the refinement of LRO.
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