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The main purpose of crystallography is to solve and refine crystal structures based on measured diffraction data.
One of important corrections crucial in the refinement process is the Debye–Waller factor correction for phonons
in physical, and phasons in perpendicular space. In our paper we show the limitations of the standard approaches
to the Debye–Waller correction in case of quasicrystals and propose new approach based on the statistical method.
For the model 1D quasicrystal we show that in case of phonons there is no significant objection against classical
(exponential) Debye–Waller factor, however using different forms can slightly improve the results of a refinement.
In case of phasons the classical formula gives no rise to the efficiency of the refinement and completely new approach
is required. We propose a redefinition of the Debye–Waller factor in terms of the statistical approach and show its
effectiveness.
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1. Introduction

The Debye–Waller correction in general compensates
for the perturbations of the atomic positions from their
ideal values during the refinement process. Thermal vi-
brations of atoms known as static or “frozen” phonons
is the most significant phenomenon to be considered.
It gives rise to a reduction of the peaks height in the
diffraction pattern. This effect is more clearly seen for
peaks with large scattering vector. The most common
form of the compensating factor is given by a Gaussian
approximation and called Debye–Waller factor (D–W).
It is expressed by exponential function of mean-square
displacement of atoms 〈x2〉 multiplied by the squared
scattering vector k. If the displacement of non-equivalent
atoms does not depend on k, we define an isotropic D–W
factor, which introduces a single parameter for a whole
crystal during the refinement. The formula for isotropic
D–W factor is the following [1]:

Dphon (k) = exp

(
−1
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〈x2〉k2

)
=

exp

(
− 1

16π2
k2bphon

)
, (1)

where bphon = 8π2〈x2〉 is the isotropic atomic displace-
ment parameter (ADP). For model 1D case the ADP can
only be isotropic. In further parts of the paper by clas-
sical D–W factor for phonons we mean the formula (1).

More realistic case in real structure refinement is the
dependence of 〈x2〉 on the direction of k. Parameters
bphon become anisotropic ADPs. The matrix represent-
ing anisotropic ADPs is symmetric with only six inde-
pendent parameters. Beside the Gaussian approxima-
tion also anharmonic terms to the exponent can some-
times be considered. Most widely used is the cumulant or
quasi-moment (Gram–Charlier) expansion recommended
by the IUCr [1].

Fig. 1. Higher-dimensional representation of the Fi-
bonacci chain. Atomic surfaces (red segments) spanned
along perpendicular-space direction (x⊥) represent
atoms in embedded 2D space. The atomic structure
in physical space can be obtained by a cut along x‖.

Another class of imperfections of real crystals caused
by atomic displacements are phasons (or phason modes).
Their special role in quasicrystals is being discussed since
the early stage of research on this type of materials. For
quasiperiodic systems the configurational disorder is ob-
served even at zero-temperature, where the atoms are or-
dered and no thermal vibrations occur. In such case the
atomic flips from one position to another are observed in-
dependently of phonons. It is highly expected that pha-
sons as entropic phenomenon are crucial in terms of stabi-
lization process in quasicrystals. This long-term investi-
gation is widely discussed in the literature [2, 3]. Whereas
the physics of phonons is clear, the nature of phasons
cannot be simply understood by classical consideration.
The most successful description of phasons is derived by
higher-dimensional analysis and, more precisely, by con-
sidering the perpendicular-space component of the hy-
perspace crystal. Quasiperiodic structure can be under-
stood as periodic in high dimensions and it is modelled in
perpendicular space, where atoms are replaced by multi-

(836)

http://doi.org/10.12693/APhysPolA.130.836


Phononic and Phasonic Debye–Waller Factors for 1D Quasicrystals 837

dimensional objects called atomic surfaces (or occupation
domains, Fig. 1). Atomic structure is obtained by a pro-
jection of atomic surfaces from high dimensions. Phasons
are introduced by shift of the projection strip or, equiv-
alently, tilt of the cutting plane [4]. Such a distortion in
perpendicular space results in flips of atoms in physical
space, which is called phason flips. Phasons were also
discussed within a hydrodynamic theory [5, 6]. Despite
the different physical background, the correcting factor
for phasons was, however, simply transferred from the-
ory of phonons in crystals. It is also considered as expo-
nential term with perpendicular-space scattering vector
k⊥ instead of physical-space one k. Most frequently the
isotropic factor is used introducing a single parameter in
the refinement. By analogy to phonons, the compensa-
tion for phason flips is obtained by the perpendicular-
space (or phasonic) Debye–Waller factor which reads

Dphas

(
k⊥
)
= exp

(
− 1

16π2
(k⊥)

2
bphas

)
, (2)

where bphas denotes a parameter to be refined.
We prove that the classical phasonic D–W factor (ex-

ponential term) works correctly only for small values
of the exponent (k⊥)2 in formula (2) which essentially
means the strong diffraction peaks. Including weak re-
flections in a refinement procedure frequently makes the
refinement results worse which can be seen in many re-
finements (see e.g. [7–9]). We show how to improve the
use of D–W factor for phasons and phonons in qua-
sicrystals. Our calculations are performed for a simple
1D model quasicrystal — the Fibonacci chain. The Fi-
bonacci chain can be constructed with two segments L
and S of lengths ratio L/S = τ (τ = 1.618 . . . is a golden
mean) decorated with atoms in the nodes. The sequence
of {L,S} segments follows the Fibonacci recurrence rule,
which makes it quasiperiodic but perfectly ordered. The
diffraction pattern of Fibonacci chain, although aperi-
odic, consists of sharp Bragg peaks grouped in periodic
series [10].

2. Method

The method we use in structure modeling of quasicrys-
tals is based on the statistical approach, where instead
of the atomic surfaces in perpendicular space the sta-
tistical distributions of projections of atoms onto refer-
ence lattice is introduced [11, 12]. Because of aperiod-
icity of quasicrystals two reference lattices are needed
and two parameters of the distribution are introduced
(u, v). Parameters (u, v) define a position of projection
of atoms onto the reference lattices. Total statistical dis-
tribution P (u, v) of positions (u, v) is non-zero only along
a segment line v = −τ2u, which is known as TAU2-
scaling [13]. The marginal distribution P (u) (called an
average unit cell) is dense and uniform and it exists in
physical space. A structure factor formula can be calcu-
lated as a Fourier transform of the average unit cell as
follows [11, 14]:

F (k) =

∫
AUC

P (u) exp (ik0 (n−mτ)) du, (3)

where k = k0 (n−mτ), k0 is main scattering vector and
n,m are integers.

Statistical method is an alternative to higher di-
mensional analysis but it is more general (see scheme
in Fig. 2). It successfully describes not only periodic
crystals or quasicrystals [15, 16], but also modulated
and composite structures as well as aperiodic structures
with singular continuous components in the diffraction
pattern [17]. In general it can be applied to arbitrary
structures [14, 18].

Fig. 2. Scheme of similarities and differences between
higher-dimensional (commonly used) and statistical
methods. The latter can be applied to arbitrary struc-
tures. Probability distributions of atomic positions in
the reference lattice frame (in physical space) can be
easily obtained by an oblique projection of the atomic
surfaces from high dimensions, whereas the physical-
space description cannot be straightforwardly lifted to
higher-dimensional one in the most general case.

3. Phonons

Phonons straightforwardly appear in the scaling re-
lation (Figure 3) as a characteristic smearing of a seg-
ment line. We have investigated one type of phonons
described by a Gaussian function generating the displace-
ment of atoms from ideal positions. The amplitude of a
displacement is small and it is ≈2% of the average dis-
tance λk between atoms (for the Fibonacci chain it is
λk = 1 + 1

τ2 ≈ 1.38). Atomic displacements contribute
to the shape of the distribution P (u), which clearly de-
viates from its ideal shape — the uniform distribution
for quasicrystals (see Fig. 4a). The function discussed in
direct space has its counterpart in Fourier space which
is interpreted as a correction function for phonons (D–
W factor in the formula for structure factor in reciprocal
space). For Gaussian function in direct space we obtain
obviously an exponential (≈ exp(−k2σ2), Fig. 4b). The
phononic D–W factor compensates for atomic displace-
ments which manifests in change of calculated (refined)
diffraction intensities. We investigated the influence on
phonons also by different generating functions (harmonic
or flat) and by this different correction functions to the
diffraction data (Bessel and cardinal sine functions) were
developed. Also, the comparison with periodic crystals
was discussed. For details see [19]. Here we focus on the
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Fibonacci chain and standard exponential D–W factor.
From Fig. 4b we see that data points (diffraction peaks
for a structure with phonons) arrange perfectly on the
shape of Gaussian function assumed before. The conclu-
sion is the following: Gaussian D–W correction satisfac-
torily well compensates for phonons in quasicrystals. It
can be successfully used as a standard correction factor
in the refinement process. Only at the very last step of
the refinement other corrections (e.g. by the Bessel or
cardinal sine functions) can be checked for better results.

Fig. 3. (a) The TAU2-scaling relation for Fibonacci
chain is given by a segment line v = −τ2u. (b) Phonons
introduce a spread of a line (if exponential approxima-
tion is used, the spread is given by a Gaussian). Phasons
introduce change of a distribution along a scaling line
(not indicated in coloring, compare with Fig. 5b).

Fig. 4. (a) The influence of a Gaussian function gen-
erating phonons on the shape of the average unit cell
for the Fibonacci chain — ideal shape (dotted line) and
modified shape (solid line) (λk ≈ 1.38 Å). (b) Ratio of
intensities with phonons (I) and without phonons (I0)
as a function of the scattering vector for the Fibonacci
chain.

4. Phasons

In our model calculations we introduced phasons as
flips of segments LS → SL in the Fibonacci chain with
a given probability α (called a flip ratio). Flip ratio de-
fines a percentage of flipped LS sequences with respect
to all LS sequences appearing in original chain. Pha-
son flips modify substantially a distribution P (u) (see
Fig. 5b). We are able to define strictly which part of
the average unit cell P (u) is changed under phasons and
what is the change. This gives a full control in real space
over the perturbation of atomic positions in the case of
phasons. The diffraction pattern can be calculated using
structure factor defined in formula (3) with a deformed

P (u). In Fig. 5a and c we show log–log plots of calcu-
lated vs. observed intensities for 7 × 105 atoms in the
Fibonacci chain (calculated numerically) and flip ratio
of 5% (∼6500 diffraction peaks in total). Intensities are
scaled to the strongest peak in the data. If no correc-
tion for phasons is done (Fig. 5a), clear deviation from
a straight line is observed for whole range of intensities.
The correction given by the classical D–W formula (2)
gives no essential improvement to a refinement result [20].
On the contrary, it introduces a constant deviation from
a straight line and leads to the underestimation of cal-
culated intensities (characteristic tail in the plot). This
is a known peculiarity of modern refinement results for
real quasicrystals. Classical D–W factor is not enough
to properly solve a problem of phasons. Much more suc-
cessful results can be obtained by using different from
exponential corrections. As an example we propose the
D–W factor defined as a sum of cardinal sine functions:

Dphas (k) =
∑
i=1,3

Aisinc ((k −mk1)di) (4)

with parameters Ai chosen appropriately (Ai are complex
in general). Parameters di define widths of three regions
of the distribution P (u) (see Fig. 5b). Additional param-
eters are directly related to flip ratio, hence they have
clear physical interpretation. The ratio of flips is propor-
tional to area of fragments (of widths di and heigths Ai)
relocated with respect to ideal distribution P (u). Param-
eters di are directly related to the type of flip (LS → SL
or inversely) and are constant for different flip ratios.
Therefore, the flip ratio can be straightforwardly ob-
tained from parameters Ai, at given type of flips. The re-
sult of a refinement with phason correction given by for-
mula (4) is shown in Fig. 5c. No deviation from a straight
line is observed and the fit is nearly perfect, being affected
only by numerical errors. All refinements were performed
with use of the Levenberg–Marquardt algorithm with χ2

minimization parameter.

Fig. 5. (a) Log–log plot of calculated vs. observed data
for Fibonacci chain with 5% of phasons in the structure
and no correction. (b) The influence of phasons on dis-
tribution P (u). If flip mechanism is LS → SL, some
part of an original distribution is missing, whereas new
region with the same area appears next to it. Finally,
the width and shape of a distribution after phason flips
is modified (solid line) in compare to original one with-
out flips (dashed). The flip ratio α = 5%, λk ≈ 1.38 Å.
(c) The same plot as in (a) but corrected with cardi-
nal sine functions (4). The agreement factors are given
in the plots. If the same structure was refined with
standard D–W factor, the corresponding value of χ2

was 0.88%.
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The use of cardinal sine functions is straightforwardly
justified within the statistical approach. Since we know
how phasons perturb the shape of the average unit cell
P (u), we can re-modify P (u) in the structure factor for-
mula (3). According to Fig. 5b we consider three re-
gions of the distribution P (u), out of which all are flat.
The Fourier transform of a flat distribution is a cardi-
nal sine function, as discussed earlier. Thus, the sum
of three functions with different coefficients is needed as
presented in formula (4). The correction for phasons can
equivalently be made to the distribution P (u) itself, be-
fore calculating the diffraction pattern and performing
the refinement procedure. We can properly deal with
phasonic contribution to diffraction pattern by appro-
priate modification of the average unit cell. For more
realistic cases, when the flipping mechanism as well as
the flip ratio are not known, this can be done in different
ways: by modelling the distribution with a histogram
(choosing small enough bins one can always reproduce
the exact shape of the distribution with an expected pre-
cision) or by approximating the shape of P (u) with some
known function (like Gaussian in classical D–W factor).
The first way introduces more parameters than usually.
It is however a worth effort because we still waive the
multiple fitting procedure. Second way can be success-
fully applied to 2-dimensional Penrose tiling as model of
decagonal quasicrystals [18]. Finally, we can use statisti-
cal moments of the distribution as fitting parameters to
the diffraction pattern. The latter method was already
applied to the Fibonacci chain in our previous paper [21].
It appears that the number of parameters required is not
high, several (6–9) parameters are fully enough to restore
the shape of the average unit cell satisfactorily well.

5. Conclusions
The main purpose of crystallography is to solve and

refine crystal structures based on measured diffraction
data. Complex crystal structures require big datasets
consisting also of weak reflections. By using powerful
synchrotron facilities and modern detectors it is possible
to collect diffraction patterns with a very high dynamic
range. It is, however, a big challenge to properly process
the measured data. In our paper we discuss the limi-
tations of the D–W factor in terms of structure refine-
ment and propose a way to improve the results of such
analysis. We prove that the D–W factor substantially
limits the range of diffraction data possible to use in a
refinement process. It works correctly only for small val-
ues of the exponential argument in the above-mentioned
formula. For real crystals (including quasicrystals), sat-
isfactorily good results are only obtained for strong re-
flections with intensities higher than 1% in relative scale.
Peaks with intensities 10−4–10−3 are refined rather inci-
dentally (see e.g. [7, 8]). This means that including weak
reflections in a refinement procedure frequently makes
the refinement results worse with lower agreement factor.
We mean here that modern refinements with big range
of intensities included in the data suffer from system-
atic deviation observed in small peaks regime, which was

also confirmed by our calculations. This phenomenon
can be justified by analyzing the influence of weak reflec-
tions on the refinement. Weak reflections occur for high
values of the k⊥, whereas strong ones have small k⊥.
According to formula (2) proper correction of the strong
reflections will result with significant decrease of the cal-
culated weak reflections intensities. Although strong re-
flections are well corrected the convergence agreement is
worse due to large number of weak reflections corrected
improperly. The correction in the form of D–W factor
will succeed only if weak reflections are limited to small
value of k⊥. We show how to improve the use of D–W
factor. Our method based on the average unit cell con-
cept gives a unique tool for proper dealing with phonons
and phasons in a fully mathematically correct way.

For 1D quasicrystal we showed that the classical for-
mula for D–W factor (exponential form) satisfactorily
well describes phonons in quasicrystals, but is highly inef-
fective in terms of phasons. We propose new approach to
phasonic correction based on statistical method and mod-
eling of the atomic distribution in physical space. Correc-
tion for phasons can be done in two ways — whether by
applying a multiplicative factor of cardinal sine functions
to the structure factor formula or by reshaping of the
atomic distribution (equally, redefinition of the structure
factor formula) accordingly to the phasonic distortion.
In the latter case the correction is made with no itera-
tive refinements of the multiplicative exponential term.
For model 1D quasicrystal the statistical method gives
much better results of the refinement and significantly
improves the agreement factors.
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