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The novel method for structural analysis of quasicrystals with phason flips is presented. The correction for
diffraction peaks’ intensities can be made within average unit cell approach by modification of the statistical
distribution of atomic positions. Characteristic function of the distribution expanded into moment series, involving
only even moments, estimates the envelope function and therefore the flip ratio can be evaluated.
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1. Introduction: the statistical approach

The statistical approach known as the average unit cell
(AUC) method [1] is the alternative to the higher dimen-
sional description of quasicrystalline structures. The ba-
sic concept involves calculation of the statistical distribu-
tion of atomic positions within periodic, reference lattice
framework. Every atomic position x is projected onto two
periodic lattices with lattice constants λk = 2π/k0 and
λq = 2π/q0, where k0 — length of the reciprocal space
basis vector, q0 — length of the modulation vector. Each
position x in the periodic lattice has coordinates u, v as
follows:

u = xmod (λk) , u ∈ [0, λk),

v = xmod(λq), v ∈ [0, λq). (1)
The distribution of coordinates P (u, v) is obtained.
It can be shown that structure factor F (k) for the scat-
tering vector k = nk0 +mq0, n,m ∈ Z is dependent on
the distribution P (u, v) [1]:

F (k)=

∫ λk

0

∫ λq

0

P (u, v) exp (ink0u+ imq0v) dudv.(2)

For quasicrystals with scaling τ =
(
1 +
√
5
)
/2, recipro-

cal space vectors ratio reads k0/q0 = τ . The u and v
coordinates are linearly dependent

v = −τ2u. (3)
Applying of the formula (3) in (2) simplifies the structure
factor definition reading

F (k) =

∫ λk

0

P (u) exp (iuw) du = F (w), (4)

where P (u) is the marginal distribution of the P (u, v)
and w = k − k0m

√
5 is the reduced scattering vector.

Equation (4) states that structure factor is the Fourier
transform of the distribution P (u). Function F (w) is
called the envelope function [2]. The diffraction pattern
consists of peaks indexed by two integers n,m ∈ Z. Ac-
cording to (4) peaks with the same value of index m
belong to the common envelope in k space. This enve-
lope must be translated by vector k1 = k0m

√
5 in order

to embrace all peaks (Fig. 1, dashed line). In the space

Fig. 1. The diffraction pattern of Fibonacci chain with
α = 0.4 of phason flips in the structure. Four envelopes
are shown (solid line). Dashed line represent envelope
for Fibonacci chain without flips.

of the so-called reduced vector w all peaks are grouped
into one curve [3].

2. Phason disorder
The Fibonacci chain (FC) is a well-known example of

quasicrystalline structure with τ -scaling [4]. The struc-
ture is composed of two bonds: long L and short S.
The ratio of lengths L/S = τ . The phason disorder [5, 6]
can be simply introduced to the structure of the Fi-
bonacci chain by rearrangement of two subsequent tiles
L and S [7, 8]. Probability of single flip will be denoted
as α. Reshuffle of tiles is done by shifting the position of
middle node lying between outer nodes.

The statistical distribution P (u) for the FC can be
constructed. The distribution is uniform [9] but it is non-
zero only in the part of the domain [10] (Fig. 2, dashed
line). The statistical distribution is reshaped after appli-
cation of phason flips (Fig. 2) differently for LS → SL
and SL → LS flips. Relation (3) is preserved. The dis-
tribution for two types of flips differs but it can be shown,
that in the space of the reduced wave vector w the differ-
ence influences only the global phase, which is irrelevant
when calculating intensities. In further analysis we focus
on flips LS → SL only.
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Fig. 2. The marginal distribution P (u) for the FC
with flip ratio α = 0.1 for flips LS → SL (left) and
SL → LS (right). In both cases dashed line shows the
boundary of ideal statistical distribution without flips.

According to results presented in [11] the commonly
used correction for phason disorder [12] (perpendicular-
space Debye–Waller factor) does not properly handle
changes of peaks’ intensities in small peaks regime.
A novel concept was proposed based on the estimation
of the envelope function by expanding it to moment se-
ries. It can be seen (Fig. 1) that flips change the shape of
the envelope function. Having the analytic formula for
the envelope function it would be possible to calculate
the structure factor and by this retrieve the atomic po-
sitions. Equation (4) is by definition the characteristic
function of the marginal distribution P (u) and always
can be approximated by its moment expansion.

3. Model analysis

Due to the Friedel theorem the observable diffraction
pattern is always centrosymmetric. According to this
the methodology presented in [11] can be simplified and
can limit calculation to only parameters for even powers.
The contribution from imaginary part can be neglected.
The intensity of the peak can be expressed as

I (w) =

N∑
j=0

a2jw
2j +O

(
w2N

)
, (5)

where a2j are parameters to be fitted. Coefficients a2j
depend on the even moments only. Equation (5) is fitted
against the diffraction pattern calculated upon cluster
of 30 000 positions of FC with three different flip ratio:
α = 0.1, α = 0.2, α = 0.4. Maximal number of fitted
parameters in each case is equal to nine. The region of
fitting was chosen to contain values of reduced vector w
in domain [-10 10]. The value of R-factor was calculated
after every fitting procedure. Collected values of R-factor
presented in Table I shows perfect convergence starting
from six fitted parameters. Additional parameters of fit
do not significantly improve value of R-factor.

The flip ratio can be estimated with the value of a2 =〈
u2
〉
— the second moment of the distribution P (u).

The value of the second moment depend on the flip ratio
(Fig. 3). The theoretical dependence is as follows [11]:〈

u2
〉
=
−12α2 + 12α+ τ4

12τ2
. (6)

Equation (6) assumes that P (u) is centrosymmetric,
which means whole distribution (Fig. 2, top) is shifted

TABLE I

The value of R-factor for three different phason flips ratio
as a function of number of fitted parameters (N).

R-factor [%]
N α = 0.1 α = 0.2 α = 0.4

2 93.2 86.7 110
3 41.3 34.9 53.5
4 8.88 4.98 18.2
5 0.82 0.38 1.17
6 0.11 0.23 0.22
7 0.02 0.03 0.15
8 0.02 0.03 0.07
9 0.00 0.03 0.05

Fig. 3. The value of the second moment of the
marginal distribution (black squares) compared with
theoretical dependence on flip ratio (solid line).

by vector [−〈u〉, 0]. The translation does not influence
peaks’ intensities. It only affects the value of global phase
which is irrelevant. Figure 3 shows values of

〈
u2
〉
ob-

tained from fitting procedure for different ratio of phason
flips using nine parameters compared with the theoretical
curve. The agreement is satisfying.

4. Conclusions

The moment series expansion of the envelope function
with only even powers in the series was used to estimate
the phason flip ratio in the Fibonacci chain. The latter
procedure reduces number of parameters to be fitted in
comparison to [11] giving comparable quality of conver-
gence based on R-factor values. The value of the second
moment of the distribution allows for estimating flip ra-
tio based on the theoretical curve. The flip ratio can be
uniquely determined due to injective dependence of the
second moment on the flip ratio.
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