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In this paper, we have solved a quantum tunneling problem for 2-dimensional systems, including electron gas
and graphene. In spite of the one-dimensional scattering problems, in two dimensions, we observe phenomenon
of tunneling at energies above the barrier. This effect is an analogue to the total internal reflection in optics.
The scattering amplitudes inside the barrier region exhibit decaying behavior corresponding to optical evanescent-
wave coupling, not only in energies below barrier height, but also above barrier. Velocity-selecting transmission,
corresponding to angle-resolved beam filtering effect is one of the achievements of the paper. The famous Hartman
effect which occurs normally at sub-barrier energies and has previously been studied for graphene is also addressed.
The results manifest occurrence of the Hartman effect for over-barrier energies, as well.
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1. Introduction

Electron tunneling through barriers is among the most
fundamental quantum concepts [1–6]. According to the
phenomenon, in the one-dimensional structures as an
electron beam with the energy below the barrier height,
arriving to the interface with barrier, undergoes evanes-
cent transport through barrier [7], meanwhile, over-
barrier transport which is carried by electrons having en-
ergy higher than potential barrier, is carried by propagat-
ing waves. In two-dimensional (as well as 3D) systems,
as well, one observes evanescent transmission at energies
below barrier. Although in case of graphene, the Klein
tunneling prohibits evanescent transport for normal inci-
dence to the interface.

In contradiction to 1D case, at 2D and 3D struc-
tures, we expect evanescent transmission over barrier for
some incidence angle interval around the normal to inter-
face [2, 3] beyond which one observes propagating waves
for energies far below and far above the barrier.

This phenomenon (i.e. over-barrier tunneling) is an
electron-wave analogue of the well-known total inter-
nal reflection and evanescent-wave coupling in optics.
The imaginary wave vector at transport direction which
is resultant of the negative contribution of kinetic energy
to the total energy at the barrier region is responsible for
tunneling. At this paper we first show as reminder that in
two-dimensional systems, e.g. two-dimensional electron
gas (2DEG) and graphene, at large enough incidence an-
gles, the imaginary wave vector and evanescent trans-
mission emerge at longitudinal direction. The critical
angle for a specified potential barrier is determined by
the energy. In this paper, velocity-selecting transmission
or angle-resolved beam filtering as well as the Hartman
effect are studied at this regime [8–10]. (Hint: in 3D
media with 1D potential profile, the plane of the inci-
dent electron beam direction and the normal to the inter-
face are sustained during the scattering hence makes the
third direction irrelevant and the problem reduces to a 2D
one.) Our findings indicate that at over-barrier energy,

1 — the electron transmission occurs mainly at small an-
gles with respect to the normal to interface of the regions
and 2 — the Hartmann effect is revealed for incident an-
gles larger than the critical angle for that energy.

2. Model and results

At the outset we remind the simplest quantum me-
chanics problem; electron transport through a barrier in
the 1D space. The Hamiltonian of general system satis-
fies Eq. (1):

Hψ = Eψ, H = T + V (r). (1)
T is the kinetic energy operator that is written for the
Schrödinger electrons as − ~2

2m
d2

dx2 where x is the coor-
dinate along system, m is effective mass of electron and
V (r) = V (x) is the potential profile.

In this case for an incident electron with energy E the
corresponding wave vector is kx = k =

√
2mE
~2 . In the

barrier region with height equal to V , one obtains k′x =

k′ =
√

2m(E−V )
~2 . Hence, for E < V , k′ is imaginary and

results in evanescent transmission while for E > V we
have oscillatory propagation.

Now, let us turn to the case of 2D systems. For this
situation in the general Eq. (1) the kinetic energy, T ,
for electrons in 2DEG is written as − ~2

2m∇
2 and for 2D

monolayer graphene is explained as − i~vFσ∇, where vF
and σ are respectively the Fermi energy and Pauli matrix
in the two sublattices space of graphene. V (r) = V (x, y)
is the potential profile at plane of electron gas, i.e. x–y
plane. For the purpose of this paper, we consider one-
dimensional barrier profile as V (x, y) = V ; 0 ≤ x ≤ L
and V (x, y) = 0 otherwise.

Let us consider an electron with energy and incidence
angle, E and θ. Inside the barrier region, they take
amounts E − V and θ′ (Fig. 1).

Due to the translational invariance in y direction, the
wave vector of electrons in this direction is conserved by
scattering from the barrier, i.e.

(769)

http://dx.doi.org/10.12693/APhysPolA.130.769


770 H. Mohammadpour

Fig. 1. (top) Schematic of the 2D system in which the
middle (dark) region is the barrier layer and electron
beams are shown by arrows. An electron incident from
the left region to the interface with angle θ with re-
spect to the normal to interface (dashed lines) is partly
reflected to the same region. At the middle region it un-
dergoes first scattering at the second interface as reflec-
tion with angle θ′ and transmission to the third region
with angle θ. (bottom) The 1D barrier energy profile
and typical incident electron energy is depicted at two
regimes; under-barrier and over-barrier energies.

ky = k
′

y,

k sin θ = k
′
sin θ

′
=⇒ sin θ

′
=

k

k′
sin θ =√

E

E − V
sin θ. (2)

θ is angle between incidence vector and normal to the
interface. Accordingly, in the case of k

k′ > 1, we have
θ
′
> θ. So, there is a critical angle,

θc = arcsin

(
k′

k

)
= arcsin(

√
E − V
E

), (3)

at which θ
′
= π/2 and above which θ

′
is imaginary. This

corresponds to imaginary k′x, because k′x = k′ cos θ′.
This phenomenon is described by separating the wave

function into the propagating component in the trans-
verse (y) direction, which reduces the problem to a 1D
one with energy effectively reduced by the kinetic energy
part related to the propagation in the y direction; hence,
an over-barrier transmission in 2D could be reduced to
an under-barrier 1D problem.

Consider a 2DEG in which the barrier of height V is
located in 0 ≤ x ≤ L. The wave functions at different
regions read as

ψ1 (x, y) = e ikxx+ikyy + re− ikxx+ikyy,

ψ2 (x, y) = ae ik
′
xx+ikyy + be− ik′xx+ikyy,

ψ3 (x, y) = te ikxx+ikyy. (4)

tan (θ) = ky/kx and tan (θ′) = ky/k
′
x. We impose

boundary conditions according to the following equations
in order to obtain the scattering amplitudes

ψ1 (x = 0) = ψ2 (x = 0) ,
∂ψ1

∂x
(x = 0) =

∂ψ2

∂x
(x = 0),

ψ2 (x = L) = ψ3 (x = L) ,

∂ψ2

∂x
(x = L) =

∂ψ3

∂x
(x = L). (5)

The transmission amplitude, T (E, θ) = |t(θ)|2 is ob-
tained as

T (E, θ) =
4k4x

4k2x4k
′2
x + (k2x − k

′2
x )

2
cos2k′2

x L
. (6)

The same situation occurs in the case of graphene as a 2D
electron system, with a difference in the E–k relations,
being linear in the case of graphene. This linear relation
changes Eqs. (2) and (3) as

sin θ
′
=

k

k′
sin θ =

E

E − V
sin θ, θc =

arcsin

(
k′

k

)
= arcsin

(
E − V
E

)
. (7)

Therefore, for the both cases (2DEG and graphene), we
expect, according to Eqs. (2), (3) and (7), that for an en-
ergy of amount E > |E − V | relation θ′

> θ holds, hence
there is a critical incidence angle, determined by Eq. (3)
(for graphene by Eq. (7)), above which the amplitudes
of transferred waves to the barrier region are descending
with the length of this region. This results in elimination
of the transmitted waves through the barrier region for
large incidence angles in a quantum barrier structure of
enough length (the thickness in x direction).

2.1. Velocity and angle selecting transmission

The above phenomenon suggests a simple velocity-
selecting transmission or angle-resolved beam filtering ef-
fect, which data are presented in this section.

In Fig. 2, the function T obtained from Eq. (7)
for 2DEG, is plot as a function of angle for different
lengths, L and different amounts of V . All the lengths
and energies are scaled respectively by wavelength, λ, and
energy of the incident electron, E, that is assumed 1 meV.

It is apparent from these diagrams that for electrons
of energy E < |E − V |, at large L, the transmission
amplitude is filtered for large angles and only small angles
are present at the other side of barrier. In other words,
there are just high velocity electrons (in x-direction) that
are permitted to transmit through the barrier and the
slow ones die out midway inside barrier.

Figure 2a gathers the diagrams of transmission ampli-
tude for barriers of thickness Lλ = 3 and different heights.
At large thicknesses like this, as we expect, only wave-
like propagation survives and evanescent ones are elimi-
nated. Accordingly, we observe pronounced transmission
at large angles for small barrier height, i.e., VE = 0.1 and
by increasing this amount by 0.5 and 0.9, the transmis-
sion is restricted to smaller angle intervals.
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Fig. 2. (a) Angle-resolved transmission amplitude
T (θ) for L

λ
= 3 and different potential barrier in terms

of the incident energy, i.e. V/E. (b) T (θ) for V
E

= 0.7
and different amounts of L/λ.

In Fig. 2b the barrier height is hold at V
E = 0.7 and

different thicknesses are employed. It shows that by in-
creasing L

λ from (a typical value of) 0.1 to 2, transmission
at large angles is absent.

In the case of graphene, a similar situation occurs for
the transmission amplitude calculated in Ref. [2].

Before proceeding to explain results of tunneling stud-
ies on graphene, it is worth to mention some points.
In Refs. [11, 12] the difference between electron transmis-
sion in the 2DEG and graphene has been investigated in
detail through the symmetries of transport.

For the symmetric tunneling barrier, it has been shown
at [2] that in graphene, for incident electrons of energy
below barrier, the system is transparent for normal in-
cidence i.e. θ = 0 and this result is independent of the
barrier thickness and height. The same result is expected
at energies above barrier undoubtedly (to be convinced
we note that the over-barrier incidence must be at least
as transparent as the under barrier one).

In comparison however it was shown in Fig. 2 that for
Schrödinger electrons of 2DEG, the transmission ampli-
tude reduces by increasing the barrier thickness, Lλ , and
its height, VE , even at over-barrier energies. This is on ac-
count of the evanescent nature of electrons wave function
at the barrier region. This situation occurs also at under-
barrier transmission, which is obvious from our quantum
mechanics knowledge.

The common result of both cases of Schrödinger elec-
trons of 2DEG and the Dirac fermions of graphene, is
that the tunneling footprint is present at over-barrier
transmission according to the system characteristics.

In order to study another phenomena related to the
over-barrier transmission, at the next section we present
our calculations of the transmission time through the bar-
rier in graphene.

2.2. Hartman effect

The Hartman effect is another result of the over-barrier
tunneling at two dimensions. This effect is related to

group delay time τg which is the time delay between the
appearance of wavepacket’s peak at x = 0 and x = L
for a particle which tunnels through a rectangular bar-
rier at this region. In a symmetric rectangular barrier,
the group delay time is given by the energy derivative of
the transmission phase shift

τg = ~
d(φt + k′xL)

dE
, (8)

where φt is the phase of transmitted wave to which we
assign zero at the interface between first region and the
barrier region (This assumption is common in all scat-
tering problems as was also used in the previous section
such that when the boundary condition was applied at
the first interface, the total phase at x = 0 equaled zero.)
So the phase that electron wave acquired at the second
interface equals to k′xL.

According to the Hartman effect, which has already
been observed at conventional semiconductor structures
as well as in monolayer graphene, the group delay time
is independent of barrier thickness, L.

On the other hand, dwell time is the time spent by a
particle in the barrier region, 0 < x < L regardless of
whether it is ultimately transmitted or reflected and is
defined as [10]:

τd =

∫ L
0
|ψ2(x)|2dx
vF cos θ

, (9)

where ψ2(x) is the wave function at the barrier region
and vF is the Fermi velocity. It has been shown that in
graphene the relation τd = τg holds [10]. So we can
check the Hartman effect using Eq. (9). In Ref. [10]
this effect was studied in a single barrier and double bar-
rier graphene for energies below the barrier. The results
showed that for an incidence angle θ, there is an energy
above which the Hartman effect is evident. The authors
considered under-barrier energies only. But because of
the 2D nature of the system (that makes θ nonzero), the
transmitted electron wave function at the barrier region
can have a longitudinal wave vector k′x of either real
or imaginary (required condition for the Hartman effect
at 2D) types. The condition for occurrence of either of
these was discussed at the previous section.

We have depicted the calculated results of τg for a
(single barrier) graphene structure in Fig. 3. Accord-
ing to the amounts of parameters used in Eq. (9) for
energy (about 1 meV), and width of the barrier region,
the amounts of τg are of picosecond order.

We observe that the Hartman effect is present at over-
barrier energies, too.

3. Conclusion

The problem of two-dimensional quantum tunneling
through a 1D barrier profile was studied for 2DEG and
graphene. At the 2D systems, electron waves are evanes-
cent not only for energies below the barrier but also at
over-barrier energies, too. This effect which corresponds
to the total internal reflection and evanescent-wave cou-
pling in optics is utilized in the velocity selective beam
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Fig. 3. The tunneling time in ps unit as a function of
energy and the barrier thickness in a single barrier of
graphene for V

E
= 250 and θ = π/6. The dotted line

shows the barrier height.

filtering or angle-resolved transmission as well as in the
Hartman effect which holds at under-barrier energies as
well.
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