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In this article we investigated structural, electronic, elastic, and optical properties of TlN in three phases, using

full potential linear augmented plane wave method in the density functional theory frame with WIEN2k code. The
calculations have been done in the generalized Perdew–Burke–Ernzerhof generalized gradient approximation, the
generalized Wu–Cohen gradient approximation, the generalized Perdew–Burke–Ernzerhof solid gradient approxi-
mation, local density approximation, and the modified Becke–Johnson approximations. In spite of the absence of
any experimental data for TlN, our results are compared with other results achieved by other different approxima-
tions which shows a good agreement with them. The band gap for TlN in wurtzite and zinc-blende are obtained
to be 0.07 and 0.09 eV within modified Becke–Johnson–local density approximation+spin–orbit approximation,
respectively. The structural properties such as phase transitions, equilibrium lattice parameters, bulk modulus and
its first pressure derivative were obtained using an optimization method. Moreover, we calculated quantities such
as elastic constants, the Young modulus, shear modulus, the Poisson ratio, and sound velocities for longitudinal
and transverse waves, the Debye temperature and the Kleinman parameters in different approximations and we
show that TlN is softer than other nitrides of the III-group. The static calculations predicted that wurtzite to
rock salt and zinc-blende to rock salt phase transitions occur at 14.7 GPa and 15.8, respectively. The optical prop-
erties of TlN in three phases, calculated in generalized gradient approximation and local density approximation
and imaginary part of dielectric function show that TlN in wurtzite and zinc-blende phases have semiconductor
properties but rock salt phase do not show. As well as, we investigate the influence of the hydrostatic pressure on
the elastic parameters and energy band structures for TlN (zinc-blende) within local density approximation.
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1. Introduction

In the last years, the III-group nitrides have been inves-
tigated widely because of their high temperature stabil-
ity, very short bond lengths, low compressibility, and high
thermal conductivity. These materials also have excel-
lent properties such as wide band gaps and strong bond
strength, therefore they can be used for violet, blue, and
green light emitting apparatuses and high temperature
transistors [1–3].

However, up to our knowledge, thallium nitride (TlN)
very little has been investigated. The band gap of the III-
group nitrides decreases from top to the bottom in ele-
ment table so we expect that TlN has a small or even
negative energy gap and shows a semi-metallic behav-
ior [4]. So combinations of Tl with wide-gap III-nitrides
yield interesting ternary alloys such as Al1−xTlxN [5] and
Ga1−xTlxN [6] with great potential for infrared optical
apparatuses. Experimental synthesis of TlN has not yet
been reported. However, by total energy calculations
from first-principles, the wurtzite phase has been found
to be the ground state phase of TlN [7, 8]. The electronic
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structure and some of optical properties of wurtzite (WZ)
and zinc-blende (ZB) TlN by da Silva et al. by using QP
model and local density approximation (LDA) have been
investigated [9].

Recently, first-principle computations based on density
functional theory (DFT) have developed the fundamental
part of materials investigations. The density functional
theory full potential linear augmented plane wave (FP-
LAPW) method has been broadly recognized as a pow-
erful method for computational solid-state researches.
The calculation of various properties such as the struc-
tural, elastic, thermodynamical, optical and electronic
properties for several compounds has been done by us-
ing the DFT method. These calculations provide a com-
prehensive knowledge about the different properties of
materials and the chance to design new compounds for
special applications [10]. Although there are three differ-
ent phases of TlN, but no any complete study comparing
TlN in these three phases has been performed. In this
work, we investigated structural, electronic, elastic, and
the optical properties of TlN in three phases. The calcu-
lation method was FP-LAPW with various approxima-
tions. Exchange-correlation functional and correspond-
ing potential have an outstanding role in DFT based total
energy calculations. The calculations were done using
LDA, generalized gradient approximation (GGA) with
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spin–orbit (SO) and modified Becke–Johnson (mBJ) for
exchange correlation functional.

2. Computational approach

In this work, we were applying FP-LAPW approach
within the DFT framework, to obtain the structural,
phase transition, elastic, thermodynamical, optical and
electronic properties of TlN in three phases by using
WIEN2k code [11]. We were applying to our calculation
different approximations such as LDA, GGA: Perdew–
Burke–Ernzerhof (PBE) [12], Wu–Cohen (WC) [13],
Perdew–Burke–Ernzerhof solid (PBEsol) [14], and mBJ-
GGA or mBJ-LDA [15]. The wave functions cut-off mag-
nitude was chosen to be RMTKmax = 8.5 for wurtzite and
RMTKmax = 8.0 for cubic phase (ZB and RS), in the in-
terstitial spaces, where RMT denoted the smallest atomic
muffin-tin sphere radius and Kmax denoted the largest
K vector in the plane wave extension. The valence wave
functions inside the muffin–tin spheres were expanded
up to lmax = 10, while the charge density was Fourier
expanded up to Gmax = 12 (a.u.)−1. The self-consistent
calculations are considered to be converged when the to-
tal energy of the system is fixed within 10−4 Ry. The inte-
grals over the Brillouin zone are 1000 k-points in the irre-

ducible Brillouin zone, using the Monkhorst–Pack special
k-points method [16]. The energy dividing the valence
state from the core state was set as −6.0 Ry. In the cal-
culations [Xe] 6s24f145d106p1 and [He] 2s22p3 states are
considered as valence electrons for Tl and N, respectively.

3. Results and discussion
3.1. Structural properties

To appraise the structural properties of TlN in three
phases, the total energies are assessed for various volumes
environs of the equilibrium cell volume V0. The gained
total energy is fitted to the Murnaghan equation of
state [17] to assess the structural properties such as equi-
librium lattice constant a and c, the bulk modulus B and
its first pressure derivative B′ and E0. These equilib-
rium parameters are calculated using GGA (PBE, WC,
and PBEsol) and LDA approximations, which are listed
in Table I. Since there are not any experimental data
for TlN, we compared our results with other theoretical
results. According to Table I, we see that our results
are inconsistent with the other results. Also, according
to Table I, we can see that ground state of TlN must be
in WZ phase like other the III-group nitrides because e0
of wurtzite phase is less than other phase.

TABLE I

Calculated lattice constant, a0 [Å] and c [Å], bulk modulus, B0, and its pressure derivative, B′
0 for TlN

in three phases using different approximations.

Thallium nitride a0 [Å] c [Å] b0 [GPa] b′0 e0 [Ry]
wurtzite

GGA (PBE) 3.7398 6.0764 93.85 4.3319 –81374.461548
GGA (WC) 3.6840 5.9718 107.71 4.4315 –81368.891968

GGA (PBEsol) 3.6806 5.9644 107.97 4.4331 –81351.716098
LDA 3.6461 5.8987 117.88 4.4851 –81328.973580

other works 3.747a, 3.746b,
3.766c, 3.598d

6.079a, 6.014b,
5.768c, 5.937d 85a, 113b, 121d 4.4a, 4.2b –

Zinc-blende
GGA (PBE) 5.2723 – 94.06 4.3038 –40687.232557
GGA (WC) 5.1961 – 106.73 4.5417 –40684.448502

GGA (PBEsol) 5.1912 – 106.03 4.6325 –40675.860657
LDA 5.1415 – 116.61 4.6386 –40664.490043

other works 5.129e, 4.882f , 5.055g – 114.9e, 141f , 128g – –
Rock salt

GGA (PBE) 4.9563 – 116.04 4.3192 –40687.19363
GGA (WC) 4.8812 – 137.46 4.2564 –40684.421728

GGA (PBEsol) 4.8737 – 137.18 4.3034 –40675.833034
LDA 4.8312 – 146.71 4.4092 –40664.463826

Ref. [19] 4.856 – 112.2 – –
a Ref. [28], b Ref. [7,8], c Ref. [9], d Ref. [6], e Ref. [42], f Ref. [10], g Ref. [36].

3.2. Phase transformations
Commonly, the phase equilibrium transition pres-

sure is acquired by calculating the total energy versus
the volume (E–V ) curves of the two phases and then

obtaining their common tangent. In zero temperature,
we have calculated the enthalpy (H = E + PV ) of TlN
corresponding to the transitions WZ to rock salt (RS)
and ZB to RS structures. It was found that the transi-
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tion pressure of TlN from WZ to RS phase was 14.7,
10.52, 10.7, and 10 GPa, and from ZB to RS to be
15.815, 10.93, 11.6 and 11.05 GPa, using GGA (PBE),
GGA (WC), GGA (PBEsol) and LDA approximations,
respectively. The amounts of calculating phase tran-
sition pressures, listed in Table II, are consistent with
others results. It is found that the phase transition
pressures decrease with the increase of the atomic ra-
dius of the III-group elements. The transition pressure
depends on the following factors: (a) the bulk modu-
lus B0 (the larger B0, the larger Pt) and (b) the dif-
ference in equilibrium volumes ∆V 0 for different phases
(the larger ∆V0, the smaller Pt) [18]. According to Ta-
ble II, our results in various approximations are less than
the values obtained by Shi et al. [19], which indicate that
our results are more favorable than their results because
as the atomic radius increases the pressure at which phase
transition occurs should decrease [20].

TABLE II

Phase transition pressure [GPa] for TlN.

TlN WZ→RS ZB→RS
GGA (PBE) 14.7 15.815
GGA (WC) 10.52 10.93

GGA (PBEsol) 10.7 11.6
LDA 10 11.05

other works 19.2a 14.6b
a Ref. [19], b Ref. [36].

3.3. Elastic properties

Elastic properties have an important role in obtain-
ing beneficial information about the anisotropic nature
of bindings, structural stability and binding properties
among adjacent atomic planes [21]. Hence, we inves-
tigate the stability of TlN in WZ, ZB, and RS phases
using four approximations. These elastic constants are
calculated by cubic-elastic and hex-elastic as interfaced
to the WIEN2k code [22].

3.3.1. Elastic constant in WZ phase
Only five independent elastic constants (C11, C12, C13,

C33, and C55) are needed to be calculated for hexago-
nal structures. By using the calculated elastic constants,
other structural properties such as bulk (B), shear (S)
and Youngs (Y ) moduli and the dimensionless Poisson ra-
tio ν (BSEν) are estimated, based on the Voigt, Reuss,
and Hill approximations [23–25].

For hexagonal structures, the elastic parameters are
given by following equations:

bV =
1

9
(2c11+c33) +

2

9
(c12 + 2c13) , (1)

bR =
1

(2S11+S33) + 2 (2S12+2S13)
, (2)

bH =
bV + bR

2
, (3)

SV =
1

15
(2c11+c33−2c13−c12) +

1

5
(2c55+c66) ,

c66 =
c11 − c12

2
, (4)

SR =
15

4 (2S12+S33)−4 (S12+2S13) +3(2S55+S66)
, (5)

SH =
SV + SR

2
, (6)

Y =
9BS

3B + S
, (7)

V =
3B − 2S

2(3B + S)
, (8)

where Cij and Sij are the elastic constants and elastic
compliances, respectively.

Since Voigt and Reuss approximations represent
the upper and lower limits of BSEν properties [25], there-
fore thermodynamical properties such as average sound
velocity (vm) which consists of the longitudinal (vl) and
transversal (vt) sound velocities and Debye tempera-
ture (θD), are calculated using Hill approximation [25]:

vl =

(
3BH + 4SH

3ρ

) 1
2

and vt =

(
SH

ρ

) 1
2

, (9)

vm =

[
1

3

(
2

v3t
+

1

v3l

)]−1
3

and θD =
h

kB

(
3

4πVa

) 1
3

vm, (10)

where h is the Planck constant, kB is the Boltzmann con-
stant, Va is the atomic volume and ρ is mass density of
material.

Using first-principle calculations and calculated elas-
tic constants, it is possible to evaluate technological
important properties such as stiffness, hardness, brit-
tle/ductility and the type of bonds for crystal structures.

A material behaves as a brittle (ductile) if the b
S ratio

is less (more) than 1.75 [26]. The sign of the Cauchy
pressure (C12 − C55) can be used to predict the type
of bonds. When that, the Cauchy pressure is negative
(positive), covalent (ionic) bonds are dominating in
materials [27]. As well as, the value of the Poisson ratio
can be used to predict the type of bonds. Stiffness is
the resistance to deformation forces. The Young modu-
lus is ratio of stress and strain, and it is representative
of the stiffness. It says that the value of the Young
modulus (Y ) is greater, the material is the stiffer. Hard-
ness is relevant to how much the material is resistant
to the shape changes. There are two representatives for
it: (1) bulk modulus, which is relevant to the resistance
against the volume changes and (2) shear modulus,
which is relevant to the resistance against the reversible
deformations. Hence, it is clear that shear modulus can
be a better predictor for hardness [26]. Elastic con-
stants obtained for TlN are summarized in Table III, and
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TABLE III

Elastic constant, bulk modulus (B), shear modulus (G), the Young modulus (Y ) and
the Poisson ratio (ν) of TlN (WZ) within different approximations for wurtzite.

TlN (Wurtzite) GGA (PBE) GGA (WC) GGA (PBEsol) LDA Other works
C11 [GPa] 144.9717 159.7167 161.3356 175.6846 139a, 162b

C12 [GPa] 72.5384 89.8642 89.8624 100.8482 70a, 77b

C13 [GPa] 54.9481 73.0464 73.2738 81.0707 50a, 58b

C33 [GPa] 153.7822 172.0633 172.6709 184.4474 149a, 175b

C55 [GPa] 31.8582 31.0423 31.5602 32.7761 31a, 36b

BV [GPa] 89.843 107.045 107.573 117.977 85a, 98b

BR [GPa] 89.787 107.030 107.553 117.893
BH [GPa] 89.815 107.037 107.563 117.935
GV [GPa] 37.405 36.437 37.033 38.782 36a

GR [GPa] 36.319 35.312 35.942 37.546
GH [GPa] 36.862 35.874 36.487 38.164
YV [GPa] 98.539 98.172 99.662 104.856 125a

YR [GPa] 96.011 95.439 97.018 101.828
YH [GPa] 97.277 96.806 98.341 103.344

νV 0.317 0.347 0.345 0.351
νR 0.321 0.351 0.349 0.356
νH 0.319 0.349 0.347 0.353

θD [K] 244.027 239.924 241.792 246.312 288a

Vt [m/s] 1929.15 1861.79 1874.83 1890.03 1924a

Vl [m/s] 3745.66 3868.32 3879.28 3975.15 3689a

Vm [m/s] 2160.22 2093.03 2107.23 2126.11 2553a
a Ref. [28], b Ref. [19].

the results are in good agreement with the result of
the other researchers. To our knowledge, there exist no
any experimental and theoretical data for some physical
quantities of TlN. We hope that our result provides a
useful reference for future experimental and theoretical
studies.

According to our results, the amount of BH

SH
for dif-

ferent approximations are equal to 2.44 (GGA (PBE)),
2.98 (GGA (WC)), 2.95 (GGA (PBEsol)), and
3.09 (LDA) which shows that TlN in WZ phase is a duc-
tile material, but LDA predicts that TlN is more ductile
than GGA approximations.

Our Cauchy pressure (C12−C55 > 0) within GGA and
LDA predicts that for TlN, ionic bonds are more domi-
nant and the values of the Poisson ratio (see Table III)
predicts that TlN exhibit ionic bonding.

The present value of the Young and shear moduli, De-
bye temperature, and average sound velocity are lower
than other nitride of the III-group which shows that TlN
is softer than other nitride of the III-group. The com-
parison of the Young modulus achieved by Shi [28] and
our calculation, demonstrate that TlN is anticipated
to be stiffer than our calculation. These differences
could be due to lattice parameters from package 2D
optimization (this package performed a convenient 2D
structure optimization (volume and c/a, i.e. hexagonal
space-group)). The previous analysis [29] on the elastic
properties showed that S

b ratio (the Pugh modulus) and
revised Cauchy pressure 1

e (C12 − C55) (Y — the Young

Fig. 1. The correlation between ductility/brittleness
and the type of bond for TlN in three phases and dif-
ferent approximations.

modulus) are well correlated to a hyperbolic criterion
to recognize the ductile to brittle properties for a large
materials of cubic symmetry. This means that there is
a correlation between ductility/brittleness property and
metallic/covalent bonding [29].

The analysis by Jamal et al. [30] were applied to hexag-
onal compounds and they seized the right results. How-
ever, we used this analysis for TlN and found that TlN
is a ductile material and has ionic bond (Fig. 1).
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3.3.2. Elastic constant in cubic phase (zinc-blende
and rock salt)

There are three independent elastic constants C11, C12

and C44 for the cubic crystals. These elastic constants

were calculated by cubic-elastic method [22] as interfaced
to the WIEN2k code for TlN in ZB and RS phases.
The results are gathered in Tables IV and V. In these
tables the previous theoretical data are also included for
comparison.

TABLE IV

Elastic constant, bulk modulus (B), shear modulus (G), the Young modulus (Y ) and the Poisson
ratio (ν) of TlN (ZB) within different approximations for zinc-blende.

TlN (zinc-blende) GGA (PBE) GGA (WC) GGA (PBEsol) LDA Other works
C11 [GPa] 118.4151 130.2153 128.3754 145.1527 151a, 194b, 129c

C12 [GPa] 81.1312 94.1365 92.0789 107.8336 110a, 115b, 85c

C44 [GPa] 82.3647 95.0413 95.4501 104.8249 64a, 103b, 64c

B [GPa] 93.559 106.162 104.177 120.273 124a, 99c

GV [GPa] 56.874 64.239 64.529 70.357
GR [GPa] 34.792 35.104 35.302 36.818
GH [GPa] 45.833 49.671 49.915 53.587
Y [GPa] 141.873 160.370 160.457 176.629
Vt [m/s] 2151.84 2191.79 2194.03 2240.7
Vl [m/s] 3952.98 4083.17 4057.72 4238.29
Vm [m/s] 2400.38 2447.41 2448.65 2504.74
θD [K] 2710.096 280.46 280.867 290.08

melt. temp. [K] 1252.83±300 1322.57±300 1311.69±300 1410.85±300
ν 0.247 0.248 0.243 0.255
ξ 0.774 0.803 0.799 0.818
A 4.418 5.268 5.259 5.618
λ 55.537 63.230 61.035 73.242
µ 56.886 64.250 64.544 70.37
C′ 18.642 18.039 18.148 18.659
C
′′

-1.233 -0.905 -3.371 3.008
a Ref. [36], b Ref. [37], c Ref. [38].

In order to ensure the reliability of our calculations,
the following well-known Born elastic stability crite-
ria [30] for the cubic systems [31–35] are surveyed for
our calculated elastic constants:

C11 − C12 > 0, c11 + 2C12 > 0, c44 > 0(11), (11)

C2
11 − C2

12 > 0, c11 > 0. (12)
The obtained elastic constants of TlN (ZB and RS) sat-
isfy the above stability conditions, displaying that they
are elastically stable in ZB and RS phases. Moreover,
the elastic constants also satisfy the cubic stability condi-
tion, i.e. C12 < B and C11 > B. So, the values of elastic
constants are reliable for TlN in ZB and RS phases.

By using the calculated elastic constants, other struc-
tural properties such as bulk modulus (B), the Voigt
shear modulus (GV), the Young modulus (Y ), shear con-
stant (C ′), the Cauchy pressure (C ′′), the Poisson ra-
tio (ν), the Kleinman parameter (ξ), the Reuss shear
modulus (GR), the Hill shear modulus (GH), anisotropy
constant (A), and the Lame coefficients (λ and µ) are
calculated.

B =
1

3
(c11+2c12), (13)

gV =
1

5
(3c44 + c11 − c12), (14)

Y =
9BgV

3B+gV
, (15)

c′ =
1

2
(c11 − c12), (16)

C ′′ = C12 − C44, (17)

v = −1 +
Y

2GV
=

3B − Y
6B

=
1

2
− Y

6B
, (18)

ξ =
C11 + 8C12

7C11 + 2C12
, (19)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
, (20)

GH =
GV +GR

2
, (21)
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TABLE V

Elastic constant, bulk modulus (B), shear modulus (G), the Young modulus (Y ) and
the Poisson ratio (ν) of TlN (RS) within different approximations for rock salt.

TlN (rock salt) GGA (PBE) GGA (WC) GGA (PBEsol) LDA Ref. [19]
C11 [GPa] 165.4318 192.3975 189.8594 200.1031 155
C12 [GPa] 85.5868 104.9100 104.5691 113.4406 91
C44 [GPa] 70.4411 70.1324 69.2544 70.4957 71
B [GPa] 112.201 134.072 132.999 142.328 112
GV [GPa] 58.233 59.576 58.61 59.629
GR [GPa] 53.945 56.499 55.421 56.362
GH [GPa] 56.089 58.037 57.015 57.995
Y [GPa] 148.933 155.670 153.309 156.966
Vt [m/s 2168.05 2157.08 2133.09 2123.29
Vl [m/s] 3958.55 4117.40 4084.20 4132.23
Vm [m/s] 2417.34 2412.75 2386.41 2377.97
θD [K] 290.565 294.326 291.56 293.081

melt. temp. [K] 1530.70±300 1690.07±300 1675.07±300 1735.61±300
ν 0.278 0.306 0.307 0.316
ξ 0.639 0.663 0.667 0.680
A 1.764 1.603 1.624 1.627
λ 72.966 94.005 93.292 102.421
µ 58.268 59.598 58.649 59.637
C′ 39.922 43.744 42.685 43.331
C
′′

15.146 34.778 35.314 42.945

A =
2C44

C11 − C12
, (22)

λ =
Y v

(1 + v)(1− 2v)
and µ =

Y

2(1 + v)
. (23)

Also, average velocity (vm), longitudinal velocity (vl),
transverse velocity (vt), and the Debye temperature (θD)
can also be attained by elastic constants and mass den-
sity. The terms are as follows:

vl =

(
3BH + 4SH

3ρ

) 1
2

, vt =

(
SH

ρ

) 1
2

,

vm =

[
1

3

(
2

v3t
+

1

v3l

)]−1
3

,

θD =
h

kB

(
3

4πVa

) 1
3

vm, (24)

where h is the Planck constant and n, N, ρ, M , and kB
are the number of atoms in the molecule, the Avogadro
number, mass density, molecular weight and the Boltz-
mann constant, respectively.

The bulk modulus (B) and the Hill shear mod-
ulus (GH) are significant parameters in recognizing
the physical properties of materials. Bulk modulus (B),
the Voigt shear modulus (GV), the Reuss shear modu-
lus (GR), shear modulus (GH), the Young modulus (Y )
and the Poisson ratio of TlN in ZB and RS phases
have been calculated using GGA (PBE), GGA (WC),
GGA (PBEsol), and LDA approximations, which are
summarized in Tables IV and V.

According to Table IV, we see that our results with
LDA approximation (full potential) are in agreement
with other results within the LDA approximation (pseu-
dopotentials) [36–38] but our results with GGA approx-
imations do not agree with other results. In GGA ap-
proximations, we can see that value of the C ′′ is negative
(C ′′ < 0) and it shows that covalent bond is more dom-
inating, but in LDA approximation the value of C ′′ is
positive (C ′′ > 0) and it shows that ionic bond is more
dominating which is in agreement with other results. But
the value of C ′′, using any of four approximations, is
nearly zero. So we can conclude that bonding of TlN in
ZB phase is covalent-ionic. In addition to C ′′, we can
consider the Poisson ratio (ν), the value of ν is much
less than 0.25 (around 0.1) for a typical covalent com-
pound, while it is nearly 0.25 or more for a typical ionic
compound. According to Table IV, the values of ν using
any of four approximations are around 0.25, so we can
conclude that bond of TlN in ZB phase is covalent-ionic
(similar to C ′′).

According to our results, the amount of b
GH

for differ-
ent approximations is equal to 2.04 (GGA (PBE)), 2.13
(GGA (WC)), 2.08 (GGA (PBEsol)), and 2.24 (LDA)
which shows that TlN in ZB phase is a ductile mate-
rial, but LDA predicts that it is more ductile than GGA
approximations. Also, by considering the Pugh modu-
lus [29] in Fig. 1, one can defer that TlN is a ductile ma-
terial and bonds in TlN are covalent-ionic. The achieved
value of the Young moduli, Debye temperature, and aver-
age sound velocity are lower than those of other nitrides
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of the III-group which shows that TlN in ZB phase is
softer than other nitride of the III-group.

The dimensionless Kleinman parameter can be gen-
erally between 0 and 1 (0 ≤ ζ ≤ 1). The lower
limit corresponds to the minimized bond bending term,
while the upper limit corresponds to the minimized bond
stretching term, as defined by Kleinman [39]. Such a
large calculated value of the Kleinman parameter (see
Table IV) predicts that bonding nature in TlN (ZB) is
dominated by the bond stretching term in comparison to
the bond bending term.

The Lamé moduli are calculated using Eq. (23) for
TlN. The results are included in Table IV. However, we
have calculated the Lamé second modulus as µ = Y

2(1+υ) ,
our result verifies that it is nothing more than the Voigt
shear modulus, viz. µ = GV (see Table IV). The Lamé
first modulus, λ, is related to a fraction of the Young
modulus. For an isotropic system one can easily show
that λ = C12 and µ = C ′ = (C11 − C12)/2 = C44 [40].
But, since the TlN is a strongly anisotropic compound
(A 6=1 see Table IV) so, µ 6= C44 (see Table IV).

According to Table V, we see that our results achieved
by LDA and GGA approximations (using full potential)
are in agreement with other results (using pseudopoten-
tials) [19]. The value of C ′′ is positive (Table V) which
shows that bonds in TlN (RS) are ionic. According to
Table V, we see that values of ν in four approximations
are greater than 0.25, so we can conclude that the bonds
of TlN in RS phase are ionic (similar C ′′).

According to our results, the amount of b
GH

for dif-
ferent approximations is equal to 2.0 (GGA (PBE)),
2.31 (GGA (WC)), 2.33 (GGA (PBEsol)), and 2.45
(LDA) which shows that TlN in RS phase is a duc-
tile material. Also, considering the Pugh modulus [29]
in Fig. 1 indicates that TlN in RS phase is a ductile
material and its bonds are ionic. The achieved values
of the Young moduli, the Debye temperature, and av-
erage sound velocity are lower than other nitrides of
the III-group, which shows that TlN in RS phase is
softer than other nitrides of the III-group. The calcu-
lated large value for the Kleinman parameter (see Ta-
ble V) predicts that bonding nature in TlN (RS) is
dominated by the bond stretching term in comparison
to the bond bending term. The value of A parame-
ter is around one (see Table V), that shows TlN in RS
phase is not strongly anisotropic and is almost isotropic,
especially in GGA (PBE) approximation because µ ∼=
C44 (see Table V).

Figure 2 shows the variations of elastic constants Cij
and their aggregate bulk modulus with a hydrostatic
pressure for ZB TlN. One obviously observes a linear de-
pendence in all curves of this compound. Our results
for the pressure derivatives ∂C11

∂P , ∂C21

∂P , ∂C44

∂P , and ∂B
∂P of

ZB TlN are listed in Table VI. It is easy to observe that
the elastic constants C11, C21 and C44, as well as bulk
modulus B exhibit a linearly increasing trend as pres-

sure enhances. Our results are in agreement with other
results, but the values of ∂C44

∂P we have calculated, differ
with other results (however, our ∂C44

∂P is similar to other
nitrides of the III-group) [36].

Fig. 2. The elastic constant versus pressure for TlN
(ZB) within LDA approximation.

TABLE VI

Calculated pressure derivatives of the elastic moduli of
TlN (ZB) within LDA approximation.

TlN (zinc-blende) ∂C11/∂P ∂C21/∂P ∂C44/∂P ∂B/∂P

present work 3.590 4.818 3.07 4.409
Ref. [36] 3.607 4.875 -1.438 4.453

4. Electronic properties

4.1. Band structure

Electronic properties of TlN in three phases were
investigated by calculating the energy band structure.
Table VII shows the calculated band gap energies of TlN
using GGA (PBE), LDA, mBJ-GGA, mBJ-LDA, Engel–
Vosko and mBJ-LDA+SO approximations along some
high symmetry directions of the Brillouin zone calculated
at equilibrium volume. The band gap energies of TlN in
WZ and ZB phases within mBJ-LDA+SO approxima-
tion were improved in comparison with other theoretical
results. We calculated a direct band gap for TlN (ZB)
about 0.09 eV and TlN (WZ) about 0.07 eV but TlN
in RS phase shows metallic behavior (Fig. 3). The ef-
fect of pressure on the band gap of TlN (ZB) was also
investigated up to the first order phase transition pres-
sure. The results are listed in Table VIII. It can be seen
that the band gap of TlN (ZB) increases with increase
of the pressure. As a rule, direct band gaps increase and
indirect band gaps decrease with increase of the pres-
sure [41].
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TABLE VII

The band gap energy [eV] of TlN within different approximations.

TlN GGA (PBE) LDA mBJ (GGA) mBJ (LDA)
E. Vosko

(GGA-WC)
mBJ (LDA+SO) Other works

wurtzite
Eg(Γv→ Γc) 0.0 0.0 0.0 0.0 0.0 0.07 0.0a

zinc-blende
Eg(Γv → Γc) 0.0 0.0 0.0 0.0 0.0 0.09 0.0a,b
a Ref. [9], b Ref. [42].

Fig. 3. The band structure of TlN — WZ (a), TlN —
ZB (b), and TlN — RS (c) within mBJ-LDA+SO.

TABLE VIII

The band gap energy [eV] in different pressures [GPa] for
TlN (ZB) within mBJ (LDA+SO) approximation.

TlN (zinc-blende)
pressure [GPa]

Lattice
constant [Å]

Band gap [eV]
in mBJ (LDA+SO)

approximation
P = 0.0 5.1415 0.09
P = 3.546 5.094 0.10
P = 6.114 5.062 0.11
P = 7.566 5.045 0.112
P = 9.031 5.029 0.12

4.2. Optical properties

Optical calculations are performed in the random
phase approximation (RPA) by using WIEN2k code.
Dielectric function (ε (ω) = ε1 (ω) + iε2(ω)) is a complex
quantity that describes the linear response of the system
to an electromagnetic radiation. The imaginary part of
dielectric function is obtained by calculating momentum
matrix elements between the occupied and unoccupied
wave [43]:

Imε
(inter)
αβ (ω) =

h2e2

πm2ω2

∑
n

∫
dk
〈
ψcnk |p

α|ψVn

k

〉
×
〈
ψVn

k |p
β |ψcnk

〉
δ
(
Ecnk − E

Vn

k − ω
)
, (25)

where p is the momentum matrix element between α
and β bands with the same crystal (ψcnk ) and (ψVn

k )
which are the crystal wave function corresponding to
the conduction and valence bands with the same crystal

wave vector k, respectively. The interband expan-
sion on the corresponding real part was obtained by
the Kramers–Kronig transformation

Reε
(inter)
αβ (ω) = δαβ +

2

π
P

∫ ∞
0

ω′Imεαβ(ω′)

(ω′)
2 − ω2

. (26)

Considerable optical functions like the refraction in-
dex n(ω) and extinction coefficient k(ω) can be appraised
by the following equations [44–46]:

n (ω) =
1√
2

√
ε1 +

√
ε21 + ε22, (27)

k (ω) =
1√
2

√√
ε21 + ε22 − ε1. (28)

Optical quantities of wurtzite phase were calculated in
two directions: (i) when polarized electric field is parallel
to c (E‖z), (ii) when polarized electrical field is perpen-
dicular to c (E‖x).

Figure 4 and 5 illustrate the real and imaginary parts
of the dielectric function spectrum of TlN for a radiation
up to 14 eV within GGA (PBE) and LDA approxima-
tions. According to Fig. 4a and Fig. 5 (imaginary part
of dielectric function), we see that band gap energies are
very small as it is evident also in Fig. 3 for TlN in wurtzite
and zinc-blende phases by using GGA (PBE) and LDA
approximations.

TABLE IX

The main peaks position [eV] of the imaginary part of
dielectric function for TlN in three phases.

TlN
GGA
(PBE)
(E‖x)

LDA
(E‖x)

GGA
(PBE)
(E‖z)

LDA
(E‖z) Ref. [9]

wurtzite 6.68 6.84 3.17 3.50 4(E‖x),
3(E‖z)

zinc-blende 6.63 6.84 – – 8.5
rock salt 3.28 3.57 – – –

The main peaks in the spectra of imaginary part of
dielectric function (Fig. 4a and Fig. 5) are given in Ta-
ble IX which are in good agreement with other reports [9].
The static dielectric constants which are extracted from
the diagram of ε1(ω) (Fig. 4b and Fig. 5) are summa-
rized in Table X and are in good agreement with previous
studies [9] and we see that the static dielectric constant
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Fig. 4. The imaginary part of dielectric function (a)
and the real part of dielectric function (b) versus energy
for TlN in ZB and RS phases within GGA (PBE) and
LDA approximations.

Fig. 5. The dielectric function for TlN in WZ phase
within GGA (PBE) and LDA approximations in two
directions (E‖x) and (E‖z).

TABLE X

The static dielectric constant for TlN in three phases
within GGA (PBE) and LDA approximations.

TlN
GGA
(PBE)
(E‖x)

LDA
(E‖x)

GGA
(PBE)
(E‖z)

LDA
(E‖z) Ref. [9]

wurtzite 20.8 19.3 17 15.6 20 (E‖x),
22.5 (E‖z)

zinc-blende 24 23 – – 25
rock salt 16.7 15 – – –

of TlN is bigger than the other III-group nitrides [47–49].
The static refraction index (Eq. (27) and Fig. 6) of TlN
in GGA (PBE) and LDA approximations are given in
Table XI and we see that the refraction index of TlN is
bigger than the other III-group nitrides [47–49].

Fig. 6. The refraction index of TlN versus energy in
ZB and RS phases (a) within GGA (PBE) and LDA
approximations and WZ phase (b) within GGA (PBE)
and LDA approximations in two directions (E‖x) and
(E‖z).

TABLE XI

The static refraction for TlN in three phases within GGA
(PBE) and LDA approximations.

TlN
GGA
(PBE),
(E‖x)

LDA,
(E‖x)

GGA
(PBE),
(E‖z)

LDA,
(E‖z)

wurtzite 4.57 4.4 4.17 3.95
zinc-blende 4.91 4.8 – –
rock salt 4.09 3.87 – –

To check the macroscopic, microscopic, and optical
properties of solids, the energy-loss function (L(ω)) is one
of the most important quantity. The energy-loss function
is proportional to the probability of energy loss (E) in a
unit of length as an electron is moving through the envi-
ronment and it is given by

L(ω) = Im

(
−1

ε (ω)

)
=

ε22
ε21 + ε22

. (29)

The main peak in the energy-loss function is known as
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plasmon peak, which indicates the excitation volume
charge density in crystals. The main peaks of energy-loss
function for TlN are shown in Fig. 7 and their position
are indicated in Table XII.

Fig. 7. The energy-loss function of TlN versus energy
in ZB and RS phases (a) within GGA (PBE) and LDA
approximations and WZ phase (b) within GGA (PBE)
and LDA approximations and two directions (E‖x)
and (E‖z).

TABLE XII

Value of energy [eV] plasmon peak for TlN in three phases
within GGA (PBE) and LDA approximations.

TlN
GGA
(PBE),
(E‖x)

LDA,
(E‖x)

GGA
(PBE),
(E‖z)

LDA,
(E‖z)

wurtzite 11.80 12.26 11.98 11.55
zinc-blende 12.28 12.23 – –
rock salt 7.50 7.69 – –

Two other important quantities of optical properties
are absorption coefficient and real part of the optical con-
ductivity and they are calculated by using the following
relations:

aij (ω) =
2ωkij(ω)

c
, (30)

Reσij (ω) =
ω

4π
Imεij (ω) . (31)

Absorption coefficient depends on tow quantities, extinc-
tion index and imaginary part of the dielectric func-
tion. Absorption coefficients for TlN in three different
phases are shown in Fig. 8 and the maxima of absorption

Fig. 8. The absorption coefficient of TlN in three
phases within GGA (PBE) and LDA approximations
and in two directions (E‖x) and (E‖z) for wurtzite
phase.

Fig. 9. The real part of optical conductivity for TlN in
three phases within GGA (PBE) and LDA approxima-
tions and in two directions (E‖x) and (E‖z) for wurtzite
phase.

coefficients can be seen in Fig. 8. Also, according to
Eq. (31), we see that the real part of the optical con-
ductivity is related to the imaginary part of dielectric
function.

As it is clear in Fig. 9 the real part of the optical con-
ductivity for TlN starts with a very small gap which in-
dicate that the TlN has semiconductor properties (espe-
cially in two phases WZ and ZB).

5. Conclusion

In summary, we have performed ab initio calculations
of structural, elastic, electronic, and optical properties
of TlN in three different phases by using the FP-LAPW
method. The results predict that TlN in WZ and ZB
phases is semiconductor with a direct band gap while
TlN in RS phase shows metallic behavior. Although
TlN in three phases is ductile material, according to
the Poisson ratio TlN in WZ and RS phases has ionic
bond and in ZB phase has an ionic-covalent bond. The
pressures at which the first order phase transitions occur
were also estimated and compared with available data.
Furthermore, the elastic constants, bulk modulus, shear
modulus, the Young modulus, the Poisson ratio, Debye
temperature, and sound velocities for longitudinal and
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transverse waves were calculated and they show that TlN
is softer than other nitrides of the III-group. The varia-
tions of band gap energy, elastic constants and the bulk
modulus of TlN (ZB) versus pressure were calculated and
discussed and show that the band gap and elastic con-
stant increase with increasing pressure. The optical pa-
rameters of TlN in three phases were also calculated and
analyzed and imaginary part of the dielectric function
show that TlN in WZ and ZB phases have almost semi-
conductor properties and TlN in RS phases has metallic
properties. Also, real part of conductivity shows that
TlN in WZ and ZB phase has semiconductor properties.
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