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The structural phase transition and elastic properties of CoN are investigated by ab initio plane-wave pseu-

dopotential density function theory method. The equilibrium lattice parameters a0, elastic constants Cij , bulk
modulus B0 and its derivative B0′ are calculated. From the usual condition of equal enthalpy, the phase transition
of CoN from zinc-blende to rocksalt structure occurs at 35.4 GPa with a volume collapse of about 15.6%, consistent
with the calculated result 36 GPa (FP-LDA), but an uncertainty is about 4.4 GPa compared with the 31 GPa
(ASA-GGA). All three independent elastic constants, C11, C12, and C44 for CoN are calculated from direct compu-
tation of stresses generated by small strains. Both C12 and C44 are less sensitive to pressure as compared with C11.
The calculated conclusions offer theoretical data for the further research of the mechanical properties for CoN.
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1. Introduction

Most transition metal (TM) nitrides and carbides have
been extensively investigated because they possess a set
of unique magnetoelectric and mechanical properties.
For example, in the field of high density magnetic record-
ing, iron nitrides are applied [1–5]. These properties
make them suitable as bulk or thin film materials in
many technological applications. Cobalt–nitride system
(CoxN, x = 1, 2, 3, 4), as a high hardness and magnetic
storage material, has been extensively reported. A cubic
Co4N was prepared with a lattice constant of 6.7788 bohr
(1 bohr = 0.529 Å), and investigated magnetic proper-
ties and bonding analyses of perovskite structure Co4N
nitride within density functional theory using both pseu-
dopotential and all electron methods [6]. The bulk Co2N
was synthesised with an orthorhombic Fe2C-type struc-
ture, but no structure was illustrated in Co2N films [7, 8].
In the early studies, mononitride CoN has been proved
that it has zinc-blende (ZB) and rocksalt (RS) structures.
RS-CoN with a lattice constant of 4.27 Å was prepared
by decomposition of Co(NH2)3 [9], while the ZB-CoN
was obtained with a lattice constant of 4.28 Å by de-
composing [Co(NH3)6](N3)3 [10]. ZB-CoN and ZB-FeN
films were grown by reactive sputtering in a mixture of
Ar + N2 gas, and the paramagnetic properties was ob-
served in ZB-CoN [11, 12]. In addition, cobalt nitride
films were deposited by reactive pulsed laser deposition
on silicon substrates at room temperature. The difference
of 0.5 and 1.5 eV in the binding energy of Co2p3/2 and
N1s electrons, respectively, was evidenced, and the reac-
tion between nitrogen and cobalt was effectively made [8].
Mater et al. [6] prepared Co–N films by using the rf-
sputtering method. The sputtered films consist of one
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or two phase, such as CoN, Co2N, Co3N, Co4N and
α-Co. The preferred orientation was observed on the
Co-N films. Saturation magnetization σs of Co–N sput-
tered film decreases from 160 to 17 e.m.u. g−1 with in-
creasing content of N from 0 to 21.7 at.%. The self-
supported ordered mesoporous cobalt and chromium ni-
trides were synthesised by Shi et al. [13]. Small-angle
X-ray diffraction (XRD) patterns and transmission elec-
tron microscopy (TEM) images showed that mesoporous
CoN and CrN nanowires with a 2D ordered hexagonal
structure were obtained. Wide-angle XRD patterns, high
resolution TEM (HRTEM) images and selected area elec-
tron diffraction (SAED) patterns revealed the formation
of crystallite metal nitrides.

However, to the best of our knowledge, though the CoN
has been well known for a long time, its theoretical study
is still few, except a few of density function theory calcu-
lations on CoN were carried out [14, 15], for example Liu
reports systematic results from ab initio calculations with
density functional theory on three cubic structures, zinc
blende (zb), rocksalt (rs) and cesium chloride (cc), of the
ten 3d transition metal nitrides [16]. Many experimental
phenomena could not be explained completely. Hence,
the theoretic work on CoN is quite significative. First
principles calculation is one of the most powerful tool
for performing theoretical investigation for solid proper-
ties [16]. Using first principles density functional the-
oretical calculations, Soni reports a systematic nonspin
and spin polarized total energy calculations of the lat-
tice dynamical and a number of other properties such
as band structure, structural and magnetic moment of
two mononitrides FeN and CoN. The phonon dispersion
curves and phonon density of states in the case of FeN
and CoN have been determined [17]. In this work, we fo-
cus on the structural phase transition and elastic proper-
ties of CoN by using the first principles calculations with
pseudopotential plane-wave method (PP-PW), which is
implemented in the computer code fhimd, yields reliable

(743)

http://dx.doi.org/10.12693/APhysPolA.130.743
mailto:dechunhe@126.com


744 He De-Chun et al.

predictions for the atomic and electronic structure as
well as many physical and chemical properties of a broad
range of materials.

2. Calculated methods

Pseudopotential plane-wave ab initio calculations were
performed within the framework of density functional
theory (DFT) [18]. The exchange and correlation
function was described by the generalized gradient
approximation (GGA) with Perdew–Burke–Ernzerhof
(PBE) [19]. The ultrasoft pseudopotential [20] was used
to generate the pseudopotentials for Co and N, respec-
tively. The Co 3d74s2 and N2s22p3 electrons were ex-
plicitly treated as valence electrons. The integral over the
Brillouin zone was 8×8×8 k-point using the Monkhorst–
Pack special k-point approach [21]. The electron wave
functions were expanded in plane-wave basis with an en-
ergy cutoff of 430 eV. To ensure proper convergence of
self-consistency calculation, the calculated total energy
of the crystal converged to less than 5.0×10−6 eV/atom,
the maximum residual force less than 0.01 eV/Å, the
maximum stress below 0.02 GPa and the displacement
of atoms during the geometry optimization less than
5 × 10−4 Å. All the total energy calculations were per-
formed using the Cambridge Serial Total Energy Package
(CASTEP) code [20, 22].

3. Results and discussion

3.1. The structures and phase transition of CoN

The ZB and RS are two typical structures for
CoN. For the ZB structure, the space group is F 4̄3M
(No. 216), the atomic coordinates are Co 4a(0,0,0) and
N 4c(0.25,0.25,0.25). Similarly, the RS structure has
FM 3̄M (No. 225) space group, the atomic coordinates
are Co 4a(0,0,0) and N 4b(0.5,0.5,0.5). For both the ZB
and RS structures of CoN, the equilibrium lattice pa-
rameters a0 are obtained by carrying out geometric opti-
mization, and the total energy E and the corresponding
primitive cell volume V are calculated by setting a series
of different lattice constants, then the zero pressure bulk
modulus B0 and its pressure derivative B0′ are obtained
by fitting the E–V curves with the Birch–Murnaghan
equation of state (EOS) [23]. The E–V curves of CoN
are plotted in Fig. 1. It is shown that the ZB-CoN is sta-
ble compared with RS-CoN at zero pressure, the ground-
state energies are –5255.40 and –5252.71 eV per eight
atoms, respectively. Our calculated equilibrium lattice
parameters a0, elastic constants Cij , bulk modulus B0

and its derivative B0′ of CoN at zero pressure and zero
temperature are listed in Table I. It is demonstrated
that our calculated results are in satisfactory agreement
with the experimental data [9–11] and other theoretical
results [15].

TABLE I

The lattice constants [Å], aggregate elastic modulus [GPa], pressure derivatives of bulk modulus and the elastic con-
stants [GPa] for ZB- and RS-CoN at T = 0 K and P = 0 GPa.

ZB RS
Present Other Present Other

a0 4.298 4.280 [10], 4.297 [11], 4.182 [15], 4.215 [15], 4.276 [15] 4.042 4.270 [9], 3.932 [15], 3.964 [15], 3.972 [15]
C11 295.4 – 431.5 –
C12 227.7 – 237.9 –
C44 56.7 – 84.3 –
B0 250.3 302.0 [15], 283.0 [15], 294.0 [15] 302.4 378.0 [15], 350.0 [15], 352.0 [15]

∂C11/∂P 3.53 – 8.60 –
∂C12/∂P 4.30 – 2.26 –
∂C44/∂C44 –0.52 – –0.19 –
∂B/∂P 4.05 – 4.37 –
B′

0 4.6 4.4 [15], 4.4 [15], 4.9 [15] 4.6 4.6 [15], 4.7 [15], 4.6 [15]

Table I show the large difference between C11 values
of RS and ZB CoN because the elastic constant C11 rep-
resents elasticity in length. Figure 1 shows that the ZB
crystal structure for CoN has the lower energy minimum
and that this minimum occurs at a larger lattice constant
than for RS. This means that at zero pressure, the ZB
is the preferred phase but at higher pressure, a phase
transition to the RS phase may be possible. One sim-
ple method for obtaining the phase transition pressure of

CoN from the ZB to RS structure is the usual condition
of equal enthalpies [24]. The phase transition pressure Pt

is determined by the Gibbs free energy G = E+PV +TS.
Since in present work, T = 0 K, the Gibbs free energy
becomes equal to the enthalpy H = E + PV . The cal-
culated enthalpy H as a function of pressure P is illus-
trated in Fig. 2a. It is indicated that the phase transition
from the ZB to the RS phase of CoN is about 35.4 GPa.
Slightly different values are obtained for this transition
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Fig. 1. Total energy as a function of volume for ZB-
and RS-CoN.

Fig. 2. Enthalpy (a) and normalized volume (b) as
a function of pressure for the ZB and RS structures
of CoN.

pressure when using the FT-LDA method (36 GPa) [15],
and the uncertainty is about 4.4 GPa compared with the
ASA-GGA method (31 GPa) [15]. The lattice dynamic
instabilities have been considered to be responsible for
the phase transition with drastic atomic motion and lat-
tice distortion induced by the pressure. The normalized
volume VP/V0 versus pressure for the ZB and RS phase of
CoN is plotted in Fig. 2b. The normalized volume VP/V0
for the ZB structure is VZB(Pt)/V0 = 0.896 and that for
RS is VRS(Pt)/V0 = 0.757 when the phase transition oc-
curs, where V0 is the ground-state volume of ZB-CoN,
and the volume collapse ∆VP/V0 is about 15.6%.

3.2. Elastic properties

Elastic properties are very important for materials be-
cause they provide information on interatomic potentials
and relate to various fundamental solid state phenomena,
such as interatomic bonding, equation of state, phonon
spectra as well as specific heat, thermal expansion, the
Debye temperature and the Grüneisen parameter [25, 26].
The elastic constants are obtained by means of a Taylor
expansion of the total energy. The derivative of energy
as a function of a lattice strain is as follows [27]:

E(V, δ) = E(V0, 0) + V0(
∑
i

τiδiξi

+
1

2

∑
ij

Cijδiξiδjξj), (1)

where E(V ,0) is the energy of the unstrained system with
equilibrium volume V0, τi is an element of stress tensor
and ξi is a factor of the Voigt index. In present work,
for all strain, δ = ±0.0018, ±0.003, ±0.0006 are taken
to calculate the total energy E for ZB- and RS-CoN,
respectively.

Since the strain and stress tensors are symmetric, the
general elastic stiffness tensor has only 21 non-zero in-
dependent components. For a cubic crystal, they are
reduced to three elastic moduli, C11, C12 and C44 fully
describe its elastic behavior. C11 and C12 can be deter-
mined from the bulk modulus B and the shear constant c:

B = (C11 + 2C12)/3, (2)

c = (C11 − C12)/2, (3)
where the shear constant c describes materials resistance
to shear deformation across the (110) plane in the [11̄0]
direction, and C44 is the resistance to shear deformation
across the (100) plane in the [010] direction. Besides the
bulk modulus B, the shear modulus G (in the Voigt no-
tation) can be defined by the following equation [28–30]:

G = (GV +GR)/2, (4)
where GV = (C11 − C12 + 3C44)/5 and GR = [5(C11 −
C12)]/[4C44 + 3(C11−C12)] are the Voigt shear modulus
and the Reuss shear modulus, respectively.

To study the stability of ZB- and RS-CoN, we calcu-
lated the elastic constants Cij , bulk modulus B, the shear
modulus G, the Voigt shear modulus GV and the Reuss
shear modulus GR at zero pressure and temperature, and
the results are listed in Tables II and III. Although there
are no experimental or theoretical data available to com-
pare the elastic constants, our data will be beneficial to
the future investigation. For cubic crystals, the mechan-
ical stability criteria are given by [31]:

C̃αα > 0, C̃11 >
∣∣∣C̃12

∣∣∣ , C̃11 + 2C̃12 > 0, (5)

where C̃αα = Cαα − P (α = 1, 4), C̃12 = C12 + P .
So we can confirm that the mechanical properties of
ZB- and RS-CoN are stable at zero pressure and tem-
perature. We can estimate that the phase transi-
tion from the ZB phase to RS phase for CoN occurs
at 40.0 GPa (C44 − P = 37.3 − 40 = −2.7 GPa < 0).
This result gets close to 35.4 GPa and Lukashev results
(31 GPa and 36.0 GPa). In order to analyze the ten-
dency of elastic properties for ZB- and RS-CoN with the
pressure increasing in detail, the range of pressures from
0 to 60 GPa is considered.

The elastic moduli as a function of pressure for ZB- and
RS-CoN are shown in Fig. 3a and b, respectively. It is
found that the elastic constants C11, C12 and bulk modu-
lus B increase when the pressure is enhanced and a linear
dependence in all curves of CoN in the considered range
of pressure, but the variations of C44 with the pressure
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Fig. 3. Elastic constants Cij , bulk modulus B and
shear constant c as functions of pressure: (a) ZB-CoN
and (b) RS-CoN, the solid lines are fitting curves.

TABLE II
Elastic constants Cij , bulk modulus B, shear modulus G,
Voigt shear modulus GV, Reuss shear GR, density ρ,
isotropic wave velocities and Debye temperature ΘD de-
pendence on pressure P for ZB-CoN.

P ρ C11 C12 C44 B GV GR G vp vs vm ΘD

0 6.10 295.4 227.7 56.7 250.3 47.5 44.6 46.1 7.15 2.75 3.12 431.8
5 6.22 313.0 249.5 55.5 270.7 46.0 42.7 44.4 7.28 2.67 3.03 422.9
10 6.33 333.9 274.3 52.6 294.2 43.5 40.3 41.9 7.43 2.57 2.92 410.1
15 6.43 352.8 297.1 50.5 315.6. 41.5 38.1 39.8 7.57 2.49 2.83 399.0
25 6.63 391.9 344.1 46.1 360.0 37.2 33.6 35.4 7.84 2.31 2.63 375.2
30 6.72 408.0 364.2 43.4 378.8 34.8 31.2 33.0 7.93 2.22 2.53 361.5
35 6.80 422.8 382.6 40.0 396.0 32.0 28.7 30.4 8.01 2.11 2.41 346.2

35.4 6.81 427.8 388.0 39.8 401.3 31.8 28.4 30.1 8.05 2.10 2.40 344.9
40 6.89 440.4 404.0 37.3 416.1 29.6 26.2 27.9 8.11 2.01 2.30 331.7
45 6.97 465.9 433.5 34.4 444.3 27.1 23.7 25.4 8.28 1.91 2.18 316.0
50 7.04 483.7 455.1 31.3 464.6 24.5 21.3 22.9 8.38 1.80 2.06 299.2
55 7.12 496.3 471.2 28.5 479.5 22.1 18.9 20.5 8.44 1.70 1.94 283.0
60 7.20 507.5 486.0 25.4 493.2 19.5 16.4 18.0 8.48 1.58 1.81 264.5

is very slight. The elastic constant C11 represents elas-
ticity in length. A longitudinal strain produces a change
in C11. The elastic constants C12 and C44 are related
to the elasticity in shape, which are two shear constants.
A transverse strain causes a change in shape but without
a change in volume. Hence, C12 and C44 are less sensitive
to pressure as compared with C11. The pressure deriva-
tives ∂C11/∂P , ∂C12/∂P , ∂C44/∂P and ∂B/∂P , for ZB-
and RS-CoN are also calculated, and the results are listed
in Table I. In order to estimate the distortion in a certain
plane of cubic crystal, the shear moduli c and c′ = C44,
corresponding to shear along the (11) and (100) planes,
respectively, are calculated. As shown in Fig. 3a and b,

the changes of c and c′ for ZB-CoN are slight with pres-
sure, which shows that pressure will not cause obvi-
ous variation of shear along the (11) and (10) planes.
The change of c for RS-CoN is also slight with the in-
crease of pressure, but the change of c′ increases obvi-
ously. It indicates that pressure will not cause obvious
variation of shear along the (110) plane, but the pressure
will make changes for shear along the (100) plane.

TABLE III
Elastic constants Cij , bulk modulus B, shear modulus G,
Voigt shear modulus GV, Reuss shear GR, density ρ,
isotropic wave velocities and temperature ΘD dependence
on pressure P for RS-CoN.

P ρ C11 C12 C44 B GV GR G vp vs vm ΘD

0 7.33 431.5 237.9 84.3 302.4 89.3 88.9 89.1 7.58 3.48 3.93 578.4
5 7.46 480.3 252.7 84.0 328.5 95.9 93.9 94.9 7.81 3.57 4.02 595.5
10 7.57 523.1 262.7 83.4 349.5 102.1 97.4 99.8 7.98 3.63 4.09 609.2
15 7.68 565.4 272.7 82.8 370.3 108.2 100.2 104.2 8.14 3.68 4.15 621.2
20 7.78 609.9 285.5 82.0 393.6 114.0 102.2 108.1 8.31 3.73 4.21 631.7
25 7.88 652.6 296.3 81.2 415.1 120.0 103.8 111.9 8.46 3.77 4.25 641.5
30 7.97 696.4 308.7 80.3 437.9 125.7 104.9 115.3 8.62 3.80 4.29 650.3
35 8.06 737.5 318.4 79.3 458.1 131.4 105.5 118.5 8.74 3.83 4.33 658.0

35.4 8.07 741.1 319.6 79.1 460.1 131.8 105.5 118.6 8.76 3.84 4.33 658.4
40 8.14 775.6 326.3 77.9 476.1 136.6 105.4 121.0 8.84 3.85 4.35 664.0
45 8.23 823.5 342.8 76.6 503.0 142.1 105.3 123.7 9.01 3.88 4.38 670.6
50 8.31 863.2 351.5 75.4 522.1 147.6 105.0 126.3 9.12 3.90 4.41 676.6
55 8.39 904.6 362.2 74.0 543.0 152.9 104.4 128.6 9.23 3.92 4.43 682.0
60 8.46 947.2 373.4 72.9 564.7 158.5 103.9 131.2 9.35 3.94 4.45 687.9

4. Conclusion

We have reported the results of phase transition and
elastic properties for ZB- and RS-CoN using the ab ini-
tio plane-wave pseudopotential density function theory
method, on which few papers are presented. From the
usual condition of equal enthalpy, the phase transition
of CoN from zinc-blende to rocksalt structure occurs
at 35.4 GPa with a volume collapse of about 15.6%,
consistent with the calculated result 36 GPa (FP-LDA),
but an uncertainty is about 4.4 GPa compared with
the 31 GPa (ASA-GGA). The tendencies of elastic prop-
erties for CoN are analyzed over a pressure range from 0
to 60 GPa. The calculated conclusions offer theoretical
data for the further research of the mechanical properties
for CoN.
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