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The evolution of a superfluorescent pulse is studied in the region of large sample lengths. A solution to the
Maxwell–Bloch semiclassical equations is found by using the inverse scattering method. It has the form of a one-
soliton solution with varying parameters. Dependence on the pulse width and the retarded time is found without
further approximations. These parameters are shown to be independent of the inhomogeneous broadening time.
Their values are in good agreement with experiment. Asymmetry of the pulse is also investigated.
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1. Introduction
At the second stage of superfluorescence (SF), when

small, but macroscopic, polarization is already formed
in the medium, the evolution of the electromagnetic
(EM) field is governed by the semiclassical Maxwell–
Bloch (MB) equations. These equations can be inte-
grated by the inverse scattering method (ISM).

In a previous paper [1] exact conservation laws for
the SF process have been derived. It was shown there
that the SF radiation starts at a certain minimal length
of propagation. In the present paper, the evolution of
the pulse shape is studied for lengths larger than the
threshold value. The method of solving the evolution
equation is based on ISM. It is close to that used by
Steudel [2], but differs from it in the way approximations
are made. A priori assumptions about orders of magni-
tude are avoided.

The EM pulse is found in the form of a one-soliton so-
lution with varying parameters. The retarded time and
pulse width are calculated easily. Asymmetry of the pulse
in time is discussed. To a good approximation, the re-
tarded time and pulse width are shown to be independent
of the inhomogeneous broadening.

In Sect. 2, earlier results on MB equations and ISM
are briefly reviewed. In Sect. 3, the form of the EM pulse
is found by the use of stationary phase method applied
to the integral equations of ISM. The only assumption,
used to establish this solution, is the asymptotic region
of large x.

Variation of soliton parameters is studied in Sect. 4.
Simple dependence of the retarded time and pulse width
on x and characteristic parameters are established. Fi-
nally, in Sect. 5, the results are compared with other
theoretical results and experimental data.

2. The Maxwell–Bloch equations
Interaction of the electromagnetic field with two-level

atoms in the slowly varying envelope approximation is
described by the Maxwell–Bloch equations which, in di-
mensional notation, are of the form

Ex = 〈λ〉, (1)

λt = −2iωλ+NE, (2)

Nt = − 1
2 (Eλ∗ + E∗λ). (3)

Here E(t, x), λ(t, x, ω) and N(t, x, ω) denote, respec-
tively, the field envelope, complex polarization, and pop-
ulation inversion in the medium; star denotes complex
conjugation and t is the retarded time. Angular brack-
ets denote averages over the inhomogeneously broadened
atomic line,

〈λ〉 =

∫ ∞
−∞

λ(ω)g(ω)dω, (4)

with the Gaussian distribution

g(ω) =
T√
π

e−ω
2T 2

, (5)

where 2ω is the difference between the atomic frequency
and the central frequency ω0 of the transition. All quan-
tities are dimensionless, scaled by the so-called coherence
time

τc =
(
2πnP2ω0/~

)−1/2 (6)
or by cτ0. Here P denotes the transition matrix element,
n is the density of atoms and c is the velocity of light.

The initial boundary conditions for SF read
E(t, 0) = E(0, x) = 0, (7)

λ(0, x, ω) = λ0, N(0, x, ω) = N0. (8)
In general, λ0 depends on x and ω and is a random
function.

The system (1)–(3) is integrable by the inverse scat-
tering method, see, e.g. [3]. The evolution in x of the
scattering data for SF is known thanks to the works of
Gabitov et al. [4] and Steudel [2]. In particular, for λ0

uniform in x and ω, the exact solution for the scattering
amplitude reads [2]:

r(ζ, x) =
√
γ
(

eWx − 1
)
/
(
1 + γ eWx

)
, (9)

where γ = tan2 1
2Θ , Θ = sin−1 λ0, W = 1

2

√
π Tw(ζT )

and w denotes the complex probability error function [5]:

w(z) =
i

π

∫
C

e−t
2

z − t
dt. (10)

Discrete eigenvalues ζj are given by the condition
xw(ζjT ) = δ + i(2j + 1)π, j = 0, 1, . . . , (11)

where δ = 1
2 ln γ−1.
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Conservation laws for SF were derived in [1] with the
use of (9). From the exact expression for the energy
transmitted to the medium (cf. Eq. (3.29) in [1]), it fol-
lows that maximum of radiation, corresponding to the
Dicke half-excited state, occurs at

xm =
1√
π T

ln γ−1. (12)

It may be interpreted as the threshold length for SF. It
seems natural, therefore, to look for the pulse solution in
the region x > xm.

3. The inverse problem

To reconstruct the field from the scattering data by
the ISM one has to solve a system of integral equations
that are of the form given in [6, 7],

χ2(ζ) = − 1

2π i

∫
C

1

z − ζT
r(z)χ1(z/T )e−2π izt/Tdz, (13)

χ1(ζ) = 1− 1

2π i

∫
C̄

1

z − ζT
r̄(z)χ2(z/T )e2π izt/Tdz, (14)

where χ1 and χ2 are connected to the Jost function χ+

defined in [2]; see also eq. (2.13) in [1]. One has
χ1 = −χ+

22 e iζx, χ2 = χ+
21 e− iζx.

The contour of integration C (respectively C̄) starts from
ζ = −∞ + iε (respectively ζ = −∞− iε), passes above
(respectively below) all poles of r (respectively r̄) and
ends at ζ = +∞ + iε (respectively ζ = +∞− iε). The
EM field E is determined by the asymptotic form of χ2

for large ζ,

χ2 =
i

4ζ
E + O(ζ−2). (15)

The functions χ1 and χ2 are analytic in the upper and
the lower halves of the ζ-plane, respectively. Due to the
exponential growth of r for large x̄ = 1

2xT one can apply
the stationary phase method [8, 9] to the integrals (13)
and (14). The stationary phase condition reads√

πw′ − 2it/x̄T = 0. (16)
Solving this equation one finds zs = iηT and
w′′|z=zs < 0. If zs is above all the poles of r, then the
contour of integration may be deformed to pass through
the stationary point. This condition for zs is discussed
in Sect. 5. The integral in Eq. (13) may be approxi-
mated by its leading term. Similarly, the path of integra-
tion in Eq. (14) can be deformed in the lower half-plane,
where zs = − iηT . As a result, one gets, for large x̄, the
relations

χ1 = 1− iRe2ηt (iηT + ζT )
−1
χ2(− iη), (17)

χ2 = iRe2ηt (iηT − ζT )
−1
χ1(iη), (18)

where

R =
e
√
πx̄ws√

2πγ−1x̄|w′′s |
(
1 + γ e

√
πx̄ws

) , ws = w(iηsT ),

w′′s = d2w/dz2|z=zs . (19)
Solving Eqs. (17) and (18) for χ2(− iη) and χ1(iη) and

using (15), one finds

E = 2η sech 2η (t− τ0) , (20)
where τ0 is defined by:

[ln (R/2ηT ) + 2ητ0]t=τ0 = 0. (21)
The solution (20) has the form of a one-soliton wave with
varying parameters η(x, t) and τ0(x). These variations
are studied in the next section. At this stage, I would like
to emphasize that the only assumption used to find (20)
has been that x̄� 1. A similar result has been obtained
by Steudel [2] under more stringent assumptions.

4. Retarded time and pulse duration

Considering Eqs. (16) and (21) at t = τ0 and defining:
y = η|t=τ0T, τ = τ0/T, (22)

one obtains√
πyw(iy) = 1− τ/x̄, (23)

2yτ = ln 2y −R|t=τ0 , (24)
where R is given by Eq. (19) and

w′′|t=τ0 =
4y√
π

[√
πw(iy)

(
1
2y
−1 + y

)
− 1
]
. (25)

By eliminating τ from Eq. (23) one gets the following
equation for y:

F1(y) =
1

4x̄
[Γ + ln x̄+ F2(y)] , (26)

where
F1(y) =

√
πw(iy)

(
1
2 − y

2
)

+ y, (27)

F2(y) = ln
[
y3
(√
πw(iy)

(
1
2y
−1 + y

)
− 1
)]
, (28)

and Γ = ln
(
32
√
πγ−1

)
. A computer plot of y shows that

this is a nearly linear function of x. The rate of growth
slightly diminishes with growing x̄. For large y Eq. (26)
can be given a simple form. The asymptotic behavior of
the probability function is given by√

πw(iy) = y−1
(
1− 1

2y
−2 + 3

4y
−4 + . . .

)
. (29)

Therefore,
F1(y) ' y−1, F2(y) ' ln 2y,

and Eq. (26) reduces to

y =
4x̄

Γ′ + lnx− ln y
, (30)

where Γ ′ = ln
(
16πγ−1

)
. It follows that Y = x̄/y is a

function of Γ ′ only, defined by the equation:

Y − 1

4
lnY =

1

4
Γ ′. (31)

As a consequence, the duration of the pulse is indepen-
dent of T and varies linearly with x̄−1, while

η ' x/4Γ ′′, (32)
where Γ ′′ is defined by Eq. (31). Introducing (32) into
Eq. (23) we find, with the same accuracy,

τ0 = 1
2Γ
′′2/x, (33)

to be independent of T .

5. Discussion

The range of the parameter x̄ for which the saddle
point approximation can be applied is from x̄ = x̄m at
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the threshold to x̄ = x̄s, where τ(x) saturates. Denoting
by η0 the imaginary part of the first discrete eigenvalue,
we see that in this region η/η0 > 1 and the discrete eigen-
values do not contribute to the solution (20).

The value of the constant Γ ′′ in the formula for the
retarded time (23) is somewhat smaller than the one cal-
culated by Steudel [2]. For the quotient τp/

√
τDτR I get

a value 2.2 times larger than Steudel’s. Differences be-
tween our results appear also in the shape of the pulse.
I get a more marked asymmetry, of the order of (τp/τD)2.
In the approximation used in Sect. 4, the values of τD and
τp are independent of inhomogeneous broadening.

Using, in my formula, the experimental values of the
parameters in the cesium vapor experiment referred to
by Vrehen and Gibbs [10], I obtain

x̄m = 7, x̄s = 20, τD = 11.9 ns, τp = 3 ns.

These numbers are larger than the measured values τD =
10 ns, τp = 2 ns.
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