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Nonlinear effects of planar and quasi-planar magnetosound perturbations are discussed. The plasma is as-

sumed to be a Newtonian thermoconducting gas with infinite electrical conductivity permeated by a magnetic
field orthogonal to the trajectories of gas particles. Generation of the non-wave modes (magnetoacoustic heating
and streaming) in the field of periodic and aperiodic magnetoacoustic perturbations is discussed. The results are
compared with acoustic heating and streaming in an nonmagnetized Newtonian gas. In contrast with a Newto-
nian gas, the magnetoacoustic forces of heating and streaming are not proportional to the summary attenuation.
The magnetoacoutic force of streaming is always smaller than the Newtonian one, but that of heating may take
larger or smaller value in dependence on the magnetic strength.
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1. Introduction

There has been much discussion in the literature dur-
ing the past years which concern magnetohydrodynamic
phenomena in conducting fluids. They are of impor-
tance in many applications of cosmic physics, geophysics,
plasma physics, physics of controlled thermonuclear fu-
sion and hypersonic aerodynamics. The understanding
that sound velocity in electrically conducting fluid varies
in presence of magnetic field comes from the 50th years
of the last century [1, 2]. It has been established that the
finite conductivity introduces dispersion and absorption
of sound planar waves which propagates perpendicular
to the magnetic field [3]. Many studies are devoted to
magneto-hydrodynamic waves in the perfectly conduct-
ing gases, and also to their nonlinear effects. For nonlin-
ear systems, we do not have the luxury of exact solutions.
Nevertheless, there are evident successes on the way of
establishing of complete exact solutions to the system of
PDEs describing one-dimensional unsteady planar and
cylindrically symmetric motions in magnetohydrodynam-
ics (MHD), involving solutions with discontinuities [4–6].
Geffen has developed a consistent nonlinear first-order
theory for the magnetogasdynamic two-dimensional and
axisymmetric flow of an inviscid conductor around slen-
der bodies [7]. Structure of MHD shock waves in a vis-
cous compressible plasma was studied in Ref. [8], and
that in a viscous non-ideal gas in Ref. [9]. Inclusion of
radiation imposes solution of a complex set of integro-
differential equations which take into account the fre-
quency dependence of the radiation field. Propagation of
weak discontinuities and their formation into shock waves
in a thermally-radiative ideal plasma were investigated in
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Ref. [10]. The effects of thermal radiation on shock wave
were studied in detail, among other, in Refs. [6, 11], and
the short review of problems relating to wave propagation
with consideration of nonlinear phenomena may be found
in this last reference. The nonlinear interaction of magne-
tohydrodynamic waves has been considered by numerous
authors [12–14]. Ponomarev has attracted attention to
nonlinear transfer of energy between magnetohydrody-
namic waves and other types of waves in plasma. Three-
wave interactions of kinetic Alfvén and magnetosound
waves were studied in Ref. [15]. Amplification of Alfvén
wave due to nonlinear interaction with a magnetoacous-
tic wave was discovered recently in Ref. [16]. The review
by Ballai summarizes knowledge on nonlinear waves in
solar plasmas [17]. It concerns also nonlinear resonant
waves.

Detection and identification of acoustic modes in the
solar corona have revived interest in their application to
coronal seismology. Dissipation of these modes is diffi-
cult to explain by linear damping ([18] and references
therein). The nonlinear theory is required, which is
able to predict nonlinear losses in magnetoacoustic en-
ergy and momentum and their transfer to non-wave mo-
tions. This study considers magnetoacoustic heating and
streaming in their conventional meaning, as entropy and
vortex motions which follow the propagation of sound in
a nonlinear flow with attenuation [19, 20]. As far as the
author knows, magnetoacoustic heating and streaming
are still unresolved issues in magnetic hydrodynamics.
The method which has been applied by the author in a
number of hydrodynamical problems concerning damp-
ing, dispersive, non-equilibrium flows or those over the
non-uniform media, gives a simple and clear sequence of
actions to implement all objectives listed hereafter (see,
for example, Refs. [21–23]). The description of nonlinear
interaction of different types MHD motions imposes res-
olution of some issues:
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(1) to determine the linear types of motion, or MHD
modes, as links between specific perturbations;
(2) to derive the leading-order equations which describe
interaction of modes in weakly nonlinear flow;
(3) to solve them with a required precision making use
of physical context of a problem.

We consider a weak nonlinearity. This means that the
effects of nonlinearity may be obtained as corrections to
the linear results. The main idea is to determine modes
in a weakly nonlinear flow making use of links of spe-
cific perturbations in a linear flow and to establish linear
projectors which eliminate all foreign modes in the lin-
ear parts of dynamic equations. This gives possibility
to derive a set of weakly nonlinear coupling evolution
equations, and to correct links of specific perturbations
in a weakly nonlinear flow. The procedure appoints a re-
current sequence of actions to obtain results as series in
powers of the Mach numberM with any desired accuracy.

In this study, we consider an unbounded volume of
a gas in a magnetic field. All evaluations are provided
with accuracy up to quadratic nonlinear terms, that is,
up to terms proportional toM2. The corrected nonlinear
links correspondent to that in the Riemann wave will be
established, and equations describing generation of the
secondary modes in the dominative magnetocoustic field,
will be derived and discussed in Sect. 3 (effects of planar
sound) and in Sect. 4 (magnetoacoustic streaming in the
field of quasi-planar sound wave).

2. Decomposition of sound and non-wave modes
in a planar flow

2.1. Basic equations describing motion
of a perfectly conducting gas

In this section, we derive the weakly nonlinear equa-
tions governing a planar flow of a gas along x-axis. Ab-
sorption due to shear viscosity of plasma η and its ther-
mal conduction σ, is taken into account. We assume
the electrical conductivity to be infinite and the mag-
netic field H = (0, 0, H(x, t)) with the magnetic field
strength H, orthogonal to the trajectories of gas parti-
cles, that is, to their velocity v = (v(x, t), 0, 0). The
starting point represents conservation equations [24]:

∂ρ

∂t
+
∂(ρv)

∂x
= 0, (1)

for mass,

ρ

(
∂v

∂t
+ v

∂v

∂x

)
+
∂p

∂x
+
∂h

∂x
=

4η

3

∂2v

∂x2
, (2)

for momentum,

ρT

(
∂s

∂t
+ v

∂s

∂x

)
=

∂

∂x

(
σ
∂T

∂x

)
+

4η

3

(
∂v

∂x

)2

, (3)

for entropy s, and
∂h

∂t
+ v

∂h

∂x
+ 2h

∂v

∂x
= 0, (4)

for the magnetic pressure h,
h = µH2/2.

t denotes time, ρ, p, T are total density, total pressure,
and temperature of a gas, respectively, µ is the magnetic

permeability. Supposing that the viscosity and thermal
conductivity are fixed fractions of their non-magnetized
values and obey power-law dependence on temperature,
we may consider them in a form:

η = κTα, σ = χTα.

In a fully ionized plasma, α = 5/2 and κ, χ are some con-
stants [25–27]. Equation (4) follows from the equations:

∂H

∂t
−∇× (v ×H) = 0, ∇ ·H = 0

and condition of perpendicularity of magnetic field and
velocity of a gas, H · v = 0 [5].

2.2. Modes in a flow of infinitely-small magnitude.
Extracting of the specific modes
from the total perturbations

All variables represent a sum of unperturbed quantity,
marked by subscript 0 (v0 = 0), and a disturbance, which
is primed. We make use of caloric and thermal equations
of state of an ideal gas

e = CV T =
p

(γ − 1)ρ
,

where e denotes the internal energy, CV is the heat ca-
pacity per unit mass under constant volume, γ = Cp/CV
is the ratio of specific heats under constant pressure
and constant density, and of thermodynamic identity
T ds = de + pd(ρ−1). The leading-order system of dy-
namic equations follows from Eqs. (1)–(4), it includes
quadratic nonlinear terms:

∂ρ′

∂t
+ ρ0

∂v

∂x
= −ρ′0

∂v

∂x
− v ∂ρ

′

∂x
, (5)

∂v

∂t
− δ1

∂2v

∂x2
+

1

ρ0

∂p′

∂x
+

1

ρ0

∂h′

∂x
= −v ∂v

∂x
+
ρ′

ρ20

∂p′

∂x

+
ρ′

ρ20

∂h′

∂x
− δ1ρ

′

ρ0

∂2v

∂x2
+
αδ1(γp′ − c20ρ′)

γp0

∂2v

∂x2
, (6)

∂p′

∂t
− γδ2
γ − 1

∂2p′

∂x2
+

δ2c
2
0

γ − 1

∂2ρ′

∂x2
+ c20ρ0

∂v

∂x
=

−v ∂p
′

∂x
− γp′ ∂v

∂x
+ δ1(γ − 1)ρ0

(
∂v

∂x

)2

− δ2
ρ0(γ − 1)

∂2
(
γp′ρ′ − c20ρ′2

)
∂x2

+
αδ2

(γ − 1)γp0

×
(
∂(γp′ − c20ρ′)

∂x

)2

, (7)

∂h′

∂t
+ 2h0

∂v

∂x
= −v ∂h

′

∂x
− 2h′

∂v

∂x
, (8)

where δ1, δ2 are coefficients responsible for viscous and
thermal effects, and c0 is the speed of sound of infinitely
small magnitude c (c0 relates to an ideal gas and is eval-
uated at unperturbed thermodynamic state p0, ρ0 in the
absence of magnetic field):

δ1 =
4κTα0
3ρ0

, δ2 =

(
1

Cv
− 1

Cp

)
χTα0
ρ0

, c =

√
γp

ρ
.
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Establishment of the dispersion relations is the pri-
mary procedure in all linear and weakly nonlinear fluid
flows. The dispersion relations describing all independent
modes follow from the linearized version of Eqs. (5)–(8).
Studies of planar motions of infinitely-small magnitude
begin usually by representing all perturbations as a sum
of planar waves proportional to exp(iω(k)t− ikx), where
k designates the wave number of any individual planar
wave

f ′(x, t) =

∫ ∞
−∞

f̃(k) exp(iω(k)t− ikx)dk

(f̃(k) exp(iω(k)t) = f̃(k, t) denotes the Fourier transform
of f ′(x, t), f̃(k, t) = 1

2π

∫∞
−∞ f(x, t)e ikxdx). In a planar

flow of a magnetic fluid, the dispersion relations take the
leading-order form

ω1,2 = ±cm,0k +
i

2

(
δ1 +

c20
c2m,0

δ2

)
k2,

ω3 = i

(
δ2

γ − 1
+
δ2(c2m,0 − c20)

c2m,0

)
k2, ω4 = 0, (9)

where

cm =
√
c2 + c2A, cA =

√
2h/ρ

designate the magnetosonic speed and the Alfvén speed,
respectively, and cm,0 denotes cm at the unperturbed
state p0, ρ0.

The first two roots ω1, ω2 correspond to the magne-
tosonic waves of different directions of propagation (fast
MHD waves), the third root ω3 corresponds to the en-
tropy mode, and the last one, ω4, corresponds to the
Alfvén wave in the flow where magnetic field is perpen-
dicular to the particles velocity. The first three roots in
Eqs. (9) are calculated with accuracy up to terms pro-
portional to the first powers of thermoviscous coefficients
δ1, δ2. They determine links of the Fourier-transforms of
specific perturbations inside every mode, or, in the other
words, eigenvectors of the correspondent linear matrix
operator. It is remarkable that two last dispersion rela-
tions are zero in a fluid without thermal conduction. In
this case, there are two degenerate eigenvalues and more
than one linearly independent eigenvectors correspond-
ing to each of them. Thermal conductivity eliminates
this degeneracy. The total perturbation is represented
by a sum of specific disturbances (we can say, eigenvec-
tors inherent to these eigenvalues) as follows:

v =

4∑
i=1

vi =
cm,0
ρ0

ρ′1 −

(
δ1

2ρ0
+

δ2c
2
0

2ρ0c2m,0

)
∂ρ′1
∂x

−cm,0
ρ0

ρ′2 −

(
δ1

2ρ0
+

δ2c
2
0

2ρ0c2m,0

)
∂ρ′2
∂x

−
δ2[γc2m,0 − c20(γ − 1)]

c2m,0(γ − 1)ρ0

∂ρ′3
∂x

, (10)

p′ =

4∑
i=1

p′i = c20ρ
′
1 − δ2

c20
cm,0

∂ρ′1
∂x

+ c20ρ
′
2 + δ2

c20
cm,0

∂ρ′2
∂x

−(c2m,0 − c20)ρ′3 +
c20
γ
ρ′4, (11)

h′ =

4∑
i=1

h′i = (c2m,0 − c20)ρ′1 + (c2m,0 − c20)ρ′2

+(c2m,0 − c20)ρ′3 −
c20
γ
ρ′4. (12)

Index in summation i designates the ordering number
of specific mode. In a thermoconducting MHD flow,
the entropy mode is isobaric in the sense that summary
pressure, which consists of thermodynamic and magnetic
parts, keeps constant. This applies also to the Alfvén
mode. We may readily establish operator rows which dis-
tinguish the specific excess density correspondent to any
mode from the total vector of perturbations. In particu-
lar, rows which distinguish excess densities corresponding
to the third and fourth roots,

P3


ρ′

v

p′

h′

 = ρ′3, P4


ρ′

v

p′

h′

 = ρ′4, (13)

take the forms

P3 =



c20
γc2m,0−(γ−1)c20

− δ2ρ0c
2
0

c4m,0

∂
∂x

− 1
c2m,0

(γ−1)c20
c2m,0(γc

2
m,0−(γ−1)c20)



T

,

P4 =


γ(c2m,0−c

2
0)

γc2m,0−(γ−1)c20
0

0

− γ
γc2m,0−(γ−1)c20


T

. (14)

They are also evaluated with accuracy up to terms pro-
portional to δ1, δ2. When P3, P4 apply at the linearized
system (5)–(8), they reduce all therms of the foreign
modes and yield the linear dynamic equations for ρ′3
and ρ′4.

In the following section, we consider the nonlinear in-
teraction of sound with two non-wave modes in the planar
flow. The nonlinear generation of the vortex mode in the
field of magnetosound perturbations, which exists only
in two- or three-dimensional flow, will be considered in
Sect. 4.

3. Nonlinear effects
of planar magnetoacoustic waves

Application of P3 and P4 at the system (5)–(8), which
includes quadratic nonlinear terms, distributes them
between dynamic equations properly. The nonlinear
therms contain cross contributions of all modes, and they
may be selected in accordance to the physical meaning
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of a problem. Usually, nonlinear effects of sound are of
interest, and only acoustic terms are considered among
all variety of nonlinear ones. These acoustic nonlinear
terms form “acoustic forces” of the secondary modes.

3.1. Nonlinear corrections in links of acoustic
perturbations

For proper description of the nonlinear effects of sound,
the linear links which are determined by eigenvectors of
the correspondent matrix operator, should be completed
by the leading-order nonlinear terms which do not in-
clude thermoviscous coefficients. Without loss of gener-
ality, progressive in the positive direction of axis x mag-
netoacoustic mode is considered. It corresponds to ω1

from Eqs. (9). The relative eigenvector in inviscid and
non-heat conducting gas takes the form

ψ1 =


ρ′1
v1
p′1
h′1

 =


ρ0
cm,0

1
ρ0c

2
0

cm,0

ρ0(c
2
m,0−c

2
0)

cm,0

 v1. (15)

The vector with unknown constants A, B, C,
ψ1,n = (A 0 B C)Tv21 , (16)

should be added to ψ1 in order to yield four equivalent
leading-order dynamic nonlinear equations for magnetoa-
coustic perturbations, when substituted into Eqs. (5)–(8)
with zero δ1, δ2. Solving algebraic equations, one ar-
rives at

A =
c2m,0 − c20(γ − 2)

4c4m,0
ρ0,

B =
c20[c2m,0(2γ − 1)− c20(γ − 2)]

4c4m,0
ρ0,

C =
(c2m,0 − c20)[3c2m,0 − (γ − 2)c20]

4c4m,0
ρ0. (17)

These constants coincide with the well-known nonlinear
corrections which make the progressive Riemann wave
isentropic [19]. If h0 tends to zero, A = − (γ−3)ρ0

4c20
,

B = γ+1
4 ρ0, and C = 0. The equation governing velocity

in the first magnetoacoustic planar wave which propa-
gates in the positive direction of axis x, takes the form

∂v1
∂t

+ cm,0
∂v1
∂x

+ εmv1
∂v1
∂x

= 0, (18)

where

εm =
3c2m,0 + c20(γ − 2)

2c2m,0
.

Equation (18) coincides with the Earnshaw equation
when h0 tends to zero and hence εm tends to ε =
γ+1
2 [19]. It describes nonlinear propagation of the pro-

gressive wave in an ideal gas, including waves with dis-
continuity. Waveforms with discontinuity may be estab-
lished by use of conservation of total magnetosound mo-
mentum. Equation (18) has been derived and used for de-
scription of propagation of a saw-tooth impulse in Ref. [5]

(Eq. (12) therein with m = 0, which corresponds to the
planar geometry of a flow).

The equation which accounts for nonlinear and ther-
moviscous effects, recalls the Burgers equation [19]:

∂v1
∂t

+ cm,0
∂v1
∂x

+ εmv1
∂v1
∂x

−1

2

(
δ1 +

c20
c2m,0

δ2

)
∂2v1
∂x2

= 0. (19)

Equation (19) coincides with that derived in Ref. [28]
for any direction of the magnetic field (this is the case
θ = π/2 in Eq. (15) therein with zero heating and ra-
diative cooling of the plasma). Chin and co-authors in
Ref. [28] include heating and radiative cooling but con-
sider perturbations over constant background. The va-
lidity of this approach should be carefully investigated in
view of that the external source makes the background
temperature nonuniform. Namely, this follows from the
energy balance for the thermoconducting fluid in the zero
order. The uniformity of the background may essentially
affect the wave dynamics, especially at the low frequen-
cies. Thermoviscous attenuation of the magnetoacoustic
perturbation in its part which relates to the thermal con-
duction, is smaller as compared with a non-magnetized
Newtonian flow where the total attenuation equals δ1+δ2.
Damping of magnetoacoustic wave depends in general on
magnetic pressure, h0, by means of cm,0. Solutions of
Eq. (19) may be established by the well-known meth-
ods suitable for the Burgers equation. In particular, it
transforms into the linear diffusion equation by the Hopf–
Cole transformation [19]. The acoustic Reynolds number
is also dependent on the magnetic strength. It may be
readily concluded that the acoustic Reynolds number is
always larger in the magnetoacoustic wave as compared
to sound for perturbations with equal Mach numbers and
frequencies.

3.2. Enhancement of the foreign modes
in the field of magnetoacoustic waves of high intensity

The progressive magnetosonic mode, which is an ana-
logue of the Riemann wave in an ideal inviscid gas, is
represented in the leading order by a sum ψ1 + ψ1,n.
The projecting rows P3 and P4 point a way of linear com-
bining of Eqs. (5)–(8) in order to eliminate foreign terms
in the linear part of equations which describe dynamics
of ρ′3 or ρ′4. Among variety of quadratic nonlinear terms,
only these ones belonging to the first progressive mode,
will be kept. This corresponds to the dominative magne-
toacoustic perturbation which propagate in the positive
direction of axis x. The thermoviscous nonlinear terms,
which originate from the thermoviscous nonlinear magne-
toacoustic terms in the initial Eqs. (5)–(8), and from the
viscous terms in the projecting rows, form the “magne-
toacoustic forces” of the secondary modes. As the result
of application of P3, one arrives at equation which gov-
erns an excess density in the entropy mode
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∂ρ′3
∂t
−

(
δ2

γ − 1
+
δ2(c2m,0 − c20)

c2m,0

)
∂2ρ′3
∂x2

=

−ρ0(2c6m,0(γc2m,0 − c20(γ − 1)))−1
(
c40c

2
m,0(δ2(5− 8γ)

+δ1(γ − 1))(γ − 2) + 2c6m,0δ1(γ − 1)γ

+4c60δ2(γ − 1)(γ − 2) + c20c
4
m,0(−3δ1(γ − 1)2

+δ2γ(4γ − 9)))

(
∂v1
∂x

)2

− ρ0(2c6m,0(γc2m,0

−c20(γ − 1)))−1
(
c20(−c4m,0(δ1(γ − 1)2 + δ2γ(7− 2γ)

+4c40δ2(γ − 1)(γ − 2)+ c20c
2
m,0(δ1(γ − 1)(γ − 2)

+δ2(−6γ2 + 17γ − 8))
)
v1
∂2v1
∂x2

−αc
2
0δ2(γ − 1)ρ0
c4m,0

(
∂v1
∂x

)2

. (20)

Equation (20) coincides with that which describes the in-
stantaneous acoustic heating in the Newtonian flows of
non-magnetized gases [29]. For periodic sound, in the
leading order,(

∂v1
∂x

)2

= −v1
∂2v1
∂x2

,

where top line denotes the temporal average over period
of the acoustic wave, and Eq. (20) simplifies as

∂ρ′3
∂t
−

(
δ2

γ − 1
+
δ2(c2m,0 − c20)

c2m,0

)
∂2ρ′3
∂x2

= Fm,h =

−

(
(c2m,0δ1 + (1 + α)c20δ2)(γ − 1)ρ0

c4m,0

)(
∂v1
∂x

)2

.(21)

The equation which describes acoustic heating of a New-
tonian gas in the absence of magnetic field (in the limit
h0 → 0, α→ 0), takes the form [19, 21]:

∂ρ′3
∂t
− δ2
γ − 1

∂2ρ′3
∂x2

= FN,h =

− (δ1 + δ2)(γ − 1)ρ0
c20

(
∂v1
∂x

)2

. (22)

It always describes the isobaric increase of temperature of
an ideal gas, which corresponds to variation in its density,
ρ′3. The acoustic force of acoustic heating is proportional
to the total attenuation, δ1 + δ2. Equation (22) is well-
known in the theory of non-linear acoustics [30]. As com-
pared with Eq. (22), the equation which governs magne-
toacoustic heating, contains smaller part responsible for
viscosity in the acoustic force in its right-hand side. As
for the coefficient by part which associates with thermal
conduction, it is larger than non-magnetized value, if

h0 > 0.5ρ0c
2
0(
√

1 + α− 1),

and equal or smaller otherwise. Therefore, the total
damping coefficient standing by magnetoacoustic force of
heating, may be smaller or larger than that in the absence

of magnetic field. This depends on unperturbed magnetic
pressure, h0. The coefficient of diffusion in magnetic fluid
is always larger. This suggests that the temperature gra-
dients in the entropy mode decrease faster. The equation
for the fourth mode follows from making use of P4:

∂ρ′4
∂t

= γρ0(c2m,0 − c20)(c2m,0δ1 + c20δ2)(2c6m,0(γc2m,0

−c20(γ − 1)))−1

((
∂v1
∂x

)2

+ v1
∂2v1
∂x2

)
. (23)

The acoustic force of this mode equals zero in the absence
of magnetic field, and its generation by the periodic or
nearly periodic sound is ineffective. An impulse might
weakly contribute in total density and total magnetic
and acoustic pressures. Equation (23) is readily inte-
grated over time for approximately progressive with the
speed cm,0 magnetoacoustic perturbation with the result

ρ′4 = −γρ0(c2m,0 − c20)(c2m,0δ1 + c20δ2)(2c7m,0(γc2m

−c20(γ − 1)))−1v1
∂v1
∂x

. (24)

Account of variance of shear viscosity with temperature
does not affect the leading-order Eqs. (21), (23).

4. Magnetoacoustic streaming
in a two-dimensional flow

We consider now velocity in the plane (x, y), that is,
v = (vx(x, y, t), vy(x, y, t), 0) perpendicular to magnetic
field H = (0, 0, Hz(x, y, t)). The effects relating to vari-
ability of thermal conductivity and shear viscosity are
insignificant as for description of the vortex flow caused
by sound in the leading order; they will be treated as
constants in this section. The equations describing the
magnetogasdynamic flow in two dimensions, take the
leading-order form

∂ρ′

∂t
+ ρ0

∂vx
∂x

+ ρ0
∂vy
∂y

= −ρ′ ∂vx
∂x
− vx

∂ρ′

∂x
− ρ′ ∂vy

∂y

−vy
∂ρ′

∂y
, (25)

∂vx
∂t
− δ1

4

∂2vx
∂x2

− δ1
4

∂2vy
∂x∂y

− 3δ1
4

∆vx

+
1

ρ0

∂(p′ + h′)

∂x
= −(v ·∇)vx +

ρ′

ρ20

∂(p′ + h′)

∂x

−δ1
4

ρ′

ρ0

∂

∂x
∇ · v − 3δ1

4

ρ′

ρ0
∆vx, (26)

∂vy
∂t
− δ1

4

∂2vy
∂y2

− δ1
4

∂2vx
∂x∂y

− 3δ1
4

∆vy

+
1

ρ0

∂(p′ + h′)

∂y
= −(v ·∇)vy +

ρ′

ρ20

∂(p′ + h′)

∂y

−δ1
4

ρ′

ρ0

∂

∂y
∇ · v − 3δ1

4

ρ′

ρ0
∆vy, (27)
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∂p′

∂t
− γδ2
γ − 1

∆p′ +
δ2c

2
0

γ − 1
∆ρ′ + c20ρ0∇ · v = −v ·∇p′

−γp′∇ · v +
3δ1
8

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

)2

− δ2
ρ0(γ − 1)

∆
(
γp′ρ′ − c20ρ′2

)
, (28)

∂h′

∂t
+ 2h0∇ · v = −v ·∇h′ − 2h′∇ · v, (29)

where x1, x2, x3 denote correspondingly x, y and z,
∆ = ∂2/∂x2 + ∂2/∂y2, and i, k, l are integer numbers
varying from 1 till 3. The most important case is a
weakly diffracting magnetoacoustic beam which propa-
gates, for definiteness, in the positive direction of axis x.
A small parameter may be introduced which accounts for
diffraction and measures ratio of the characteristic scales
of perturbations in the longitudinal and transversal
directions, β = ky/kx, so that√

k2x + k2y ≈ kx

(
1 +

k2y
2k2x

)
,

etc. The expansion of dynamic equations in series with
respect to powers of small parameters is a common
procedure in nonlinear acoustics, this is a way to derive
many simplified relations and equations, among them,
the celebrated Khokhlov–Zabolotskaya–Kuznetsov equa-
tion, which describes propagation of weakly diffracting
sound beam in a Newtonian fluid [19]. Considering small
attenuation and diffraction, one readily arrives to the
leading-order dispersion relations in a magnetogasdy-
namic flow,

ω1,2 = ±cm,0kx

(
1 +

k2y
2k2x

)
+

i

2

(
δ1 +

c20
c2m,0

δ2

)
k2x,

ω3 = i

(
δ2

γ − 1
+
δ2(c2m,0 − c20)

c2m,0

)
k2x, ω4 = 0,

ω5 = i
3

4
δ1∆. (30)

The new root which appears in two-dimensional flow
reflects existence of the incompressible rotational flow of
a gas with velocity whose divergence is zero, ∇ · v5 = 0.
The solenoidal velocity may be decomposed from the
total one by applying of the operator Pvor at the vector
of the overall velocity

Pvorv = ∆−1

(
∂2

∂y2 − ∂2

∂x∂y

− ∂2

∂x∂y
∂2

∂x2

)

×

( ∑5
i=1 vx,i∑5
i=1 vy,i

)
=

(
vx,5
vy,5

)
. (31)

Applying Pvor at the momentum equation
(Eqs. (26), (27)), results in the equation governing
magnetoacoustic streaming

∂v5

∂t
− 3δ1

4
∆v5 = − 1

ρ0
Pvor

(
ρ′a
∂va

∂t

)
=

cm,0
2ρ20

(
δ1 +

δ2c
2
0

c2m,0

)
Pvorρ

′
a∇

∂

∂x
(ρ′2 − ρ′1). (32)

ρ′a, va denote summary acoustic perturbation in density,
ρ′a =

∑2
i=1 ρ

′
i, va =

∑2
i=1 vi. Equation (32) coincides

with the instantaneous equation which governs acoustic
streaming in Newtonian flows in the absence of magnetic
field [21, 31]. Its averaged leading-order form in the case
of the periodic magnetoacoustic wave, may be expressed
in terms of magnetoacoustic pressure in the right-hand
side,

∂vx,5
∂t
− 3δ1

4
∆vx,5 = Fm,s =

1

ρ20c
4
0cm,0

(
δ1 + δ2

c20
c2m,0

)(
∂p′1
∂t

)2

. (33)

This equation has the well-known limit in the case of
non-magnetized Newtonian fluid. The details of the
evaluations in the case of a Newtonian fluid may be
found in Refs. [21, 31]. The leading-order equation
which describes the longitudinal component of the
vortex velocity vx,5 in the case of periodic acoustic
pressure, takes the form [19, 32, 33]:

∂vx,5
∂t
− 3δ1

4
∆vx,5 = FN,s =

δ1 + δ2
ρ20c

5
0

(
∂p′1
∂t

)2

. (34)

The conclusion is that whereas the acoustic Newtonian
force of streaming is determined by the summary
attenuation due to irreversible mechanical and thermal
losses, δ1 + δ2, the acoustic force of magnetoacoustic
streaming is always smaller than that in a Newtonian
flow, Fm,s < FN,s. Hence, the velocity of streaming is
smaller as compared with a non-magnetized Newtonian
fluid at equal Mach numbers.

5. Concluding remarks

This study brings out some features of the excitation of
the non-wave modes by sound in the magnetogasdynamic
flow. Weakly nonlinear governing equations of the non-
wave modes are derived which take into account acoustic
sources. They are valid for periodic and aperiodic sound.
Equations (20), (21), (32), (33) are the main results of
the study. They describe dynamics of magnetoacoustic
heating and streaming independently of the spectrum of
magnetoacoustic wave. The magnetoacoustic forces of
heating and streaming, and hence, variations of the back-
ground temperature and mean streams depend on mag-
netic strength. These slow variations may be measured
remotely, and the magnetic pressure in a plasma may be
established analytically.

Magnetoacoustic heating in the case of periodic sound
is determined by Eq. (21). Both Eqs. (21), (22) are in-
homogeneous diffusity equations. Comparing the right-
hand sides of both equations, one may conclude that
the acoustic force of magnetoacoustic heating Fm,h may
be smaller or larger than the Newtonian one FN,h
in dependence on unperturbed magnetic pressure h0.
The magnetoacoustic force is not proportional to the
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summary attenuation, in contrast to FN,h. The param-
eter of diffusity is larger in Eq. (21). In the multi-
dimensional flow, nonlinear loss in acoustic momentum
causes streaming. Equations (32), (33) govern two-
dimensional quasi-planar magnetoacoustic streaming and
Newtonian streaming, respectively. The magnetoacous-
tic force of streaming is always smaller than the New-
tonian one, Fm,s < FN,s. In the right-hand sides of
Eqs. (21), (22), partial derivative with respect to time
may be used in the leading order; the acoustic forces
may be also expressed in terms of partial derivative of
acoustic pressure, recalling that(

∂v1
∂x

)2

≈ c−2m,0
(
∂v1
∂t

)2

≈ c−4m,0ρ
−2
0

(
∂p′1
∂t

)2

.

The equalities are approximate with regard to nonlinear-
ity and attenuation. Magnetoacoustic forces of heating
and streaming include only quadratic nonlinear terms,
and they are proportional to the first powers of damp-
ing coefficients. The excitation of the Alfvén mode by
sound is described by Eq. (23). It is insignificant. This
concerns periodic, nearly periodic magnetoacoustic wave,
and impulses.

There are not restrictions concerning strength of the
magnetic field in this study. Equations (20), (32) are not
averaged over the sound period, and they make use of
instantaneous magnetoacoustic source. Magnetoacoustic
perturbations may be periodic or not. Usually, nonlinear
interactions are resolved by representing of interacting
modes as a sum of harmonics and solving of coupling
equations for exactly satisfied resonance conditions with
some desired accuracy. As a rule, three-wave resonant
interactions are considered [15, 16]. The author applies
the method of projecting of initial system of conservation
equations into the system of coupling equations for in-
teracting modes independently of their initial spectrum.
The modified relations of perturbations in the progressive
magnetosound wave are determined. They differ from
that in the Riemann wave in the absence of magnetic
field. These links describe the progressive wave more pre-
cisely and may be readily modified by involving terms of
the higher order in series in powers of the Mach num-
ber. They may be useful in studies of nonlinear effects
of a progressive magnetoacoustic wave and its nonlinear
distortion in the course of propagation.
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