
Vol. 130 (2016) ACTA PHYSICA POLONICA A No. 3

Chirped Optical Solitons in Birefringent Fibers
with Parabolic Law Nonlinearity and Four-Wave Mixing

H. Trikia, A. Biswasb, D. Milovićc and M. Belićd

aRadiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University,
P.O. Box 12, 23000 Annaba, Algeria

bDepartment of Mathematical Science, Delaware State University, Dover, DE 19901-2277, USA
and Faculty of Science, Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia

cFaculty of Electronic Engineering, Department of Telecommunications, University of Nis,
Aleksandra Medvedeva 14, 18000 Nis, Serbia

dScience Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
(Received March 23, 2016)

We investigate exact soliton solutions with nonlinear chirp for the coupled nonlinear Schrödinger equations
with cubic-quintic nonlinearity, self-steepening, self-frequency shift and four-wave mixing. The model governs the
femtosecond pulse propagation in birefringent fibers. We introduce a new ansatz to obtain the nonlinear chirp
associated with the propagating soliton pulses. New chirped soliton pair solutions with non-trivial chirping are
found for the coupled nonlinear equations, illustrating the potentially rich set of solitonic pulse solutions of the model
with higher-order effects. The solutions comprise two types of bright-W-shaped and bright-bright soliton pairs as
well as kink and anti-kink pulses. Interestingly, the bright wave in the bright-W shaped soliton pairs possesses
a platform underneath it, originating from the self-steepening and self-frequency shift effects. The corresponding
chirp associated with each of these optical soliton pairs is also determined. It is shown that the nonlinear chirp is
related to the pair intensity and determined by self-frequency shift and pause self-steepening. Parametric conditions
for the existence and uniqueness of chirped solutions are given.
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1. Introduction
Soliton propagation in nonlinear media is an important

subject that has attracted much interest in many fields of
physics such as nonlinear optics [1, 2], plasma physics [3],
and nonlinear quantum field theory [4]. In a single-
mode optical fiber, the soliton dynamics is described by
the nonlinear Schrödinger (NLS) equation for a scalar
field. It is commonly known that the NLS equation ad-
mits bright and dark soliton-type solutions in anomalous
and normal dispersion regimes, respectively. Soliton can
propagate over a long distance without the amplitude
attenuation and shape change in the uniform nonlinear
fiber under the condition that the group velocity disper-
sion (GVD) balances the self-phase modulation [5]. How-
ever, modeling the propagation of ultrashort (femtosec-
ond) optical pulses cannot be described by using of the
NLS model. It has been demonstrated that when the
pulses are shorter than 100 fs, the higher order effects
in nonlinear media become important, and therefore the
governing equation should still include third-order dis-
persion (TOD), the self-steepening (SS), and the self-
frequency shift [6]. The effect of TOD is significant for fs
pulses when the GVD is close to zero [7]. It is negligible
for optical pulses whose width is of the order of 100 fs
or more, having power of the order of 1 W and GVD far
away from zero [7]. The effect of SS is due to intensity
dependent group velocity of the optical pulse, which gives
the pulse a very narrow width in the course of propaga-
tion [8]. The stimulated Raman scattering is due to the

delayed response of the medium, which forces the pulse
to undergo a frequency shift, known as self-frequency
shift [8]. Notice that various types of exact solitons or
solitary wave solutions of higher-order NLS-type equa-
tions have been studied extensively, both theoretically
and numerically [9–17]. In particular, a new form of soli-
tary wave solution that takes the shape of W was found
for the first time for a single higher-order NLS equation
with third-order dispersions, self-steepening, and self-
frequency shift effects by Li et al. [18]. Another novel
localized solution named dipole soliton, dubbed “dark-
in-the-bright” solitary wave solution has been recently
found for a higher-order NLS equation with non-Kerr
nonlinearity in Ref. [19]. Such solution is obtained us-
ing a soliton ansatz solution composed of the product of
bright and dark solitary waves.

For applications for which polarization effects are im-
portant, one must consider a system of coupled NLS
equations that is generally not integrable [20]. Such non-
linear models possess applications in the study of soli-
ton wavelength division multiplexing, soliton switching in
the birefringent optical fibers, multichannel bit parallel-
wavelength optical-fiber networks, propagation and colli-
sion of the temporal vector solitons in birefringent fibers,
etc. [21]. In realistic optical fibers, no mode is single
due to the presence of birefringence. Indeed, single mode
fibers are bimodal [8, 22].

In recent years, considerable attention has been paid
to the investigation of chirped femtosecond solitons
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propagating in nonlinear optical fibers [7, 23, 24]. Appli-
cations of such objects include pulse compression or am-
plification, optical pulse compressors, and solitary-wave-
based communications links [25, 26]. However, much of it
is confined to propagating scalar fields that are described
by a single higher-order NLS equation. To the best of our
knowledge, vector soliton solutions with nonlinear chirp-
ing for coupled higher-order NLS models have not been
uncovered as yet. Compared with that for the scalar NLS
equation, the case for the coupled models will be more
complicated due to the presence of nonlinear coupling
terms.

In this paper we investigate for the first time to our
knowledge soliton pairs with nonlinear chirp for a sys-
tem of two coupled NLS equations describing the prop-
agation of femtosecond optical pulses in a birefringent
fiber lightguide. We have shown that the coupled NLS
equations in the presence of the quintic nonlinearity,
self-steepening, self-frequency shift and four-wave mixing
term possesses rich solitonic solutions with non-trivial
chirping. The soliton pairs comprise bright-W shaped,
kink and anti-kink, and bright-bright solutions with a
nonlinear chirp which is related to the pair intensity.
The parameter domains in which these chirped solutions
exist are given. The corresponding chirp associated with
each of these localized solutions is also found.

This article is organized as follows. In Sect. 2, we
present the coupled NLS equations considered and the
nonlinear chirp ansatz that is used to determine the
chirping associated with propagating envelope solutions.
Then, we find exact families of soliton pair solutions for
the basic model under consideration in Sect. 3. The cor-
responding chirp associated with each of these families is
also determined. Parametric conditions for the existence
of chirped solutions are given. Finally, we summarize our
findings and give future directions of work in Sect. 4.

2. Model and equations

Consider the following system governing the dynamics
of the coherently coupled orthogonally polarized wave-
guide modes in the Kerr medium:

iq1z + αq1ττ +
(
|q1|2 + σ |q2|2

)
q1 + λq22q

∗
1 = 0, (1)

iq2z + αq2ττ +
(
σ |q1|2 + |q2|2

)
q2 + λq21q

∗
2 = 0, (2)

which covers systems (1), (3), and (4) given in Ref. [21].
Here q1 and q2 are the complex amplitudes in both po-
larization modes, σ is the incoherent coupling parameter
(the cross-phase modulation as well), α is the parame-
ter of GVD, λ is the coherent coupling parameter (the
four-wave mixing as well), and ∗ denotes the complex
conjugate. Note that the coherent coupling governs the
energy exchange between two axes of the fiber [21].

As a natural generalization of the above model with
the cubic nonlinearity, we consider the following model
of coupled NLS-type equations with quintic nonlinearity,
self-steepening and self-frequency shift terms:

iq1z + αq1ττ + s
(
|q1|2 + σ |q2|2

)
q1 + λq22q

∗
1

+iγ
[(
|q1|2 + η |q2|2

)
q1

]
τ
+ iδq1

(
|q1|2 + r |q2|2

)
τ

+θ
(
|q1|2 + Γ |q2|2

)2
q1 = 0, (3)

iq2z + αq2ττ + s
(
σ |q1|2 + |q2|2

)
q2 + λq21q

∗
2

+iγ
[(
η |q1|2 + |q2|2

)
q2

]
τ
+ iδq2

(
r |q1|2 + |q2|2

)
τ

+θ
(
Γ |q1|2 + |q2|2

)2
q2 = 0. (4)

where γ, δ and θ are the coefficients of the self-
steepening, self-frequency shift, and quintic nonlinearity,
respectively.

In the limiting case γ = δ = θ = 0 and s = 1, the sys-
tem of Eqs. (3) and (4) transforms into the Kerr model of
Eqs. (1) and (2) describing the orthogonally polarized op-
tical waves propagation in a cubic anisotropic nonlinear
medium. Notice that a more general form of coupled non-
linear Schrödinger equation with cubic-quintic nonlinear-
ity (3) and (4) involving the linear coupling terms, third-
order dispersion and other additional terms was proposed
by Radhakrishnan et al. [27]. In Ref. [28], the one-,
two- and three-soliton solutions have been derived for
the generalized coupled nonlinear Schrödinger equations
with cubic-quintic nonlinearity based on the bilinear form
obtained via the dependent variable transformation and
the Hirota method. Furthermore, the Darboux transfor-
mation and soliton solutions for the coupled nonlinear
Schrödinger-typed equations with cubic-quintic nonlin-
ear terms have been recently given [29]. In absence of
quintic nonlinearity and when the effect of third order
dispersion is included and the four-wave mixing term is
replaced by another kind of the Raman contribution, the
unchirped cnoidal and solitary wave solutions of the cou-
pled higher order NLS equations have been investigated
by using coupled amplitude-phase formulation [8].

The most challenging problem is to find various types
of exact soliton solutions with nonlinear chirp to Eqs. (3)
and (4). Such a problem is very important in under-
standing widely different nonlinear phenomena arising in
birefringent optical fibers. In the present work, we have
been able to find five families of chirped soliton solutions
for the model under consideration, together with the con-
ditions that specify the parameter domains in which they
exist. Moreover, the nonlinear chirp associated with each
of these solitonic pairs is also determined.

To find chirped soliton solutions of the above model,
we firstly generalize the complex envelope traveling-wave
solutions used in Ref. [23] to the case of two soliton
modes as

q1(z, τ) = A(ξ)e i (χ(ξ)−kz), (5)

q2(z, τ) = B(ξ)e i (χ(ξ)−kz), (6)
where A, B and χ are real functions of the traveling co-
ordinate ξ = τ −uz. Here u is given in term of the group
velocity of the wave packet as u = 1/v. The correspond-
ing chirp is given by δω(τ, z) = − ∂

∂τ (χ(ξ)−kz) = −χ
′(ξ).
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Substituting the solutions (5) and (6) into Eq. (3) and
separating the real and imaginary parts leads to

kA+uχ′A+αA′′−αχ′2A+sA3+(sσ+λ)AB2−γχ′A3

−γηχ′AB2+θ
(
A6+Γ 2AB4+2ΓA3B2

)
=0, (7)

and
−uA′ + 2αA′χ′ + αAχ′′ + (3γ + 2δ)A2A′

+2 (γη + δr)ABB′ + γηB2A′ = 0. (8)
Now inserting the solutions (5) and (6) into Eq. (4) and
separating the real and imaginary parts leads to

kB+uχ′B+αB′′−αχ′2B+sB3+(sσ+λ)A2B−γχ′B3

−γηχ′A2B+θ
(
B6+Γ 2A4B+2ΓA2B3

)
=0, (9)

and
−uB′ + 2αB′χ′ + αBχ′′ + (3γ + 2δ)B2B′

+2 (γη + δr)AA′B + γηA2B′ = 0. (10)
To solve the set of Eqs. (7) – (10), we introduce the ansatz

χ′ = p
(
A2 +B2

)
+ q, (11)

where p is the nonlinear chirp parameter and q is the con-
stant chirp parameter. Accordingly, the resultant chirp
consisting of linear and nonlinear contributions can be
obtained as

δω(τ, z) = −p
(
A2 +B2

)
− q. (12)

The substitution of ansatz (11) into Eq. (8) and (10)
yields four algebraic equations that define the chirp
parameters:

p = −3γ + 2δ

4α
, q =

u

2α
(13)

and give important constraint equations between the
model coefficients as γη + 2δr = 0 and 3γ + 2δ = 2γη.
This implies that the parameters δ, η, r and γ are not in-
dependent and the propagating chirped soliton pairs are
obtained in the framework of these conditions.

It is very interesting to see that the phase in (11) has a
nontrivial form and has an intensity dependent chirping
term related to the pair intensity I = |q1|2 + |q2|2 =
A2 +B2, in addition to the linear contribution described
by the last term. Note that one must require p 6= 0
in (12) in order to obtain nonlinearly chirped soliton pair
solutions for Eqs. (3) and (4). In order to ensure this
we select appropriate self-steepening and self-frequency
shift coefficients in (13) so that 3γ + 2δ 6= 0. In the
trivial limit, when p = 0, the expression (12) becomes
independent of the amplitudes A andB, and the resulting
soliton solutions will present a linear chirp.

Now using Eqs. (11) and (13) in Eqs. (7) and (9), we
respectively obtain

A′′ − a1A6 + a2A
3 + a3AB

2 − a4A3B2

−a6AB4 − a6A = 0, (14)
and

B′′ − a1B6 + a2B
3 + a3BA

2 − a4B3A2

−a6BA4 − a6B = 0, (15)

where

a1 =
(2δ + 3γ) (2δ − γ)− 16αθ

16α2
, a2 =

2αs− uγ
2α2

,

a3 =
2α (σs+ λ)− uγη

2α2
,

a4 =
(2δ + 3γ) (2δ + γ − 2γη)− 16αθΓ

8α2
,

a6 =
(2δ + 3γ) (2δ + 3γ − 4γη)− 16αθΓ 2

16α2
,

a6 = −4kα+ u2

4α2
. (16)

Equations (14) and (15) are elliptic-type differential
equations with a fifth-degree nonlinear term. In what
follows, we present, for the first time to our knowledge,
new types of soliton pair solutions with nonlinear chirp
for these equations. We also report parametric conditions
for which these optical solitons exist.

3. Chirped soliton solutions pairs

We note that the finding of exact soliton solutions to
Eqs. (14) and (15) is a nontrivial issue. Below we pro-
pose efficient ansätze which are able to determine vari-
ous chirped solitonic solutions for the above equations.
By considering such ansätze solution, we can offer an ac-
curate estimate of the dynamics of chirped solitons in
birefringent fibers such as their rules of evolution and
conditions of existence. Here we have found five types of
soliton pair solutions for these coupled equations. Inter-
estingly, such solutions are derived in the most general
case, when all the coefficients ai (with i = 1, ..., 6) have
nonzero values.

3.1. Case I

To start with, we propose localized soliton ansätze of
the type

A(ξ) = ρ+ w
√

sech(µξ), (17)

B(ξ) = ρ− w
√

sech(µξ), (18)
where ρ, w and µ are unknown parameters to be
determined.

Substituting expressions (17) and (18) into Eqs. (14)
and (15) and equating the equal powers of sech(µξ) to
zero yields the following consistency conditions:
− (a1 + a4 + a6) ρ

6 + (a2 + a3) ρ
3 − a6ρ = 0, (19)

1

4
wµ2 − (5a1 + a4 − 3a6) ρ

4w

+(3a2 − a3) ρ2w − a6w = 0, (20)

w3
(
−10a1ρ2 + a2 + a3 + 2a4ρ

2 − 2a6ρ
2
)
= 0, (21)

3

4
wµ2 + (a1 + a4 + a6)w

6 = 0, (22)

w2ρ
(
−10a1ρ2 + 3a2 − a3 + 2a4ρ

2 − 2a6ρ
2
)
= 0, (23)

ρw4 (5a1 + a4 − 3a6) = 0. (24)
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First, one solves Eq. (24) to obtain a necessary condition
for the existence of the above soliton pair solutions as:
5a1 + a4− 3a6 = 0. Second, using Eqs. (21) and (23), we
find another important constraint equation which must
be satisfied: a2 = a3. Introducing these conditions into
Eqs. (20) – (23), one obtains the soliton parameters ρ, µ
and w as

ρ =

√
a2

4a6 − 2a4
, (25)

µ = 2

√
a6 (2a6 − a4)− a22

2a6 − a4
, (26)

w = 4

√
3a22 − 3a6 (2a6 − a4)

(2a6 − a4) (a1 + a4 + a6)
. (27)

Also from relations (25) and (19) the following restriction
is obtained: a22 (7a6 − 5a4 − a1) − 4a6 (2a6 − a4)2 = 0.
Now because parameter µ needs to be positive for the ex-
istence of the solutions (17) and (18), one must choose the
parameters ai to satisfy (2a6 − a4)

[
a6 (2a6 − a4)− a22

]
>

0, as it follows from (26). We also find from (25) that
one must require a2 (2a6 − a4) > 0 for the parameter ρ
to exist.

If we insert the solutions (17) and (18) into (5) and (6),
we obtain new chirped soliton solutions of Eqs. (4)
and (5) of the form

q1(z, τ) =
[
ρ+w

√
sech (µ (τ−uz))

]
e i (χ(ξ)−kz), (28)

q2(z, τ) =
[
ρ−w

√
sech (µ (τ−uz))

]
e i (χ(ξ)−kz, (29)

which exist provided that the conditions: γη + 2δr = 0,
3γ + 2δ = 2γη, 5a1 + a4 − 3a6 = 0, a2 = a3, and
a22 (7a6 − 5a4 − a1)− 4a6 (2a6 − a4)2 = 0 are satisfied.

Figure 1a and b depicts intensity profiles of the above
soliton pair for the following values of the model param-
eters: α = 1.6001, s = −2.6885, σ = 1, γ = 0.30814,
η = 3.98601, δ = 0.76604, r = −0.801687, θ = 0.235207,
u = 4.1184, k = −39.431 and Γ = 2

3 . To make a2 = a3,
we set λ = 1.1841064. This leads to a bright-type
soliton solution |q1(z, τ)|2 that has a pronounced plat-
form underneath it, and an interesting envelope solution
|q2(z, τ)|2 that takes the shape of W. Clearly, the inten-
sity profile of the q2-soliton is similar with the W-shaped
soliton reported in [18]. However, the solution form is
distinctive from the ones in [18] in having the

√
sech -

shaped envelope.

It is also very interesting to see that Eqs. (14) and (15)
possess another type of bright-W shaped soliton pair of
the form

A(ξ) = ρ+ w
√

sech(µξ), (30)

B(ξ) = −ρ+ w
√

sech(µξ), (31)
which has the same parameters as those given in Eqs. (25)
– (27).

The corresponding associated chirping is obtained by
substituting the solutions (17) and (18) into Eq. (12) as
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Fig. 1. Intensity profile for the (a) bright soliton
|q1(0, τ)|2 as a function of τ as computed from Eq. (28)
and (b) W-shaped soliton |q2(0, τ)|2 as computed from
Eq. (29). (c) Chirping profile of soliton pair as a func-
tion of τ as computed from Eq. (32). The parameters
are given in the text.

δω(τ, z) = −2p
(
ρ2 + w2 sech(µξ)

)
− q, (32)

where the first two terms denote the nonlinear chirp that
results from the self-steepening and self-frequency shift,
while the last term accounts for the linear chirp. Fig-
ure 1c shows the resultant chirping (32) at z = 0.

3.2. Case II

Now we propose the following soliton ansätze for solv-
ing Eqs. (14) and (15) :

A(ξ) = f + g sech(µξ), (33)

B(ξ) = f − g sech(µξ), (34)
where f , g and µ are real constants to be determined by
the physical parameters of the model.

Substituting expressions (33) and (34) into Eqs. (14)
and (15) and equating coefficients of the same powers of
sech j (µξ) for j = 0, .., 5 to zero, we obtain
− (a1 + a4 + a6) f

6 + (a2 + a3) f
3 − a6f = 0, (35)

−gµ2 + (5a1 + a4 − 3a6) f
4g
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+(a3 − 3a2) f
2g − a6g = 0, (36)

fg2
(
−10a1f2 + 3a2 − a3 + 2a4f

2 − 2a6f
2
)
= 0, (37)

2gµ2 + 10a1f
2g3 − a2g3 − a3g3 − 2a4f

2g3

+2a6f
2g3 = 0, (38)

fg4 (5a1 + a4 − 3a6) = 0, (39)

g6 (a1 + a4 + a6) = 0, (40)
Equations (39) and (40) can be solved to yield the neces-
sary conditions for the existence of soliton solutions (33)
and (34) as: a4 + 2a6 = 0, and a1 = a6. Inserting the
condition (40) into Eq. (35), we obtain

f =

√
a6

a2 + a3
. (41)

Now substituting the condition (39) and Eq. (41) into
Eq. (36), one can obtain the pulse width µ as

µ =

√
2a6 (a3 − a2)
a2 + a3

. (42)

By using (39) and (42), Eq. (38) gives

g =

√
2a6

a2 + a3
. (43)

From these expressions, we can see that one must choose
the parameters a2, a3 and a6 to satisfy a6 (a2 + a3) > 0
and a3 > a2. Having obtained the expressions for the
pulse parameters f , g and µ, we construct a new family
of chirped soliton pair solutions for Eqs. (14) and (15) as
follows:

q1(z, τ) = [f + g sech(µ(τ − uz))] e i (χ(ξ)−kz), (44)

q2(z, τ) = [f − g sech(µ(τ − uz))]e i (χ(ξ)−kz). (45)
which exist provided all the previous conditions are sat-
isfied [namely, γη+2δr = 0, 3γ+2δ = 2γη, a4+2a6 = 0,
a1 = a6, a6 (a2 + a3) > 0 and a3 > a2].

The intensity profiles of this kind of soliton pair are
shown in Fig. 2a and b. Here we have used the values:
α = 1.6001, γ = 0.30814, δ = 0.15407, η = 2, Γ = 3,
s = 2.6885, σ = 1, r = −2, θ = −0.0074175, u = 4.1184,
λ = 1.1841064 and k = −8.0214725. As seen in these fig-
ures, the solutions (44) of q1 describes the bright-type lo-
calized wave that has a pronounced platform underneath
it, while the solution (45) accounts for the W-shaped pro-
file of the wave q2.

Here the wave for q2 has the same sech solution form
as for the W-shaped soliton presented in [18]. But the
intensity profile form is distinctive from the one in [18]
which has an intensity value much higher in the middle
than the one obtained in our case. It should be noticed
that this intensity depends on the chosen parameter val-
ues which must satisfy the necessary conditions for the
existence of the soliton solutions.

The chirp associated with these optical pulses is
given by

δω(τ, z) = −2p
(
f2 + g2 sech2(µξ)

)
− q. (46)

Figure 2c presents the typical profile of chirping at
z = 0 for the same model parameters. As seen from

the figure, the chirping for this soliton pair has a maxi-
mum at the center of the pulse and it saturates at a given
finite value as τ → ±∞.
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Fig. 2. Intensity profile for the (a) bright soliton
|q1(0, τ)|2 as a function of τ as computed from Eq. (44)
and (b) W-shaped soliton |q2(0, τ)|2 as computed
from Eq. (45). (c) Chirping profile of soliton pair as
a function of τ as computed from Eq. (46). The param-
eters are given in the text.

3.3. Case III

Next we investigate bright-type localized waves using
the ansätze [30]:

A(ξ) = b1 sech(µξ), (47)

B(ξ) = b2 sech(µξ), (48)
where b1 and b2 are real constants to be determined by
the physical parameters of the model.

Substituting these ansätze into Eq. (14) and equating
the coefficients of independent terms, one obtains

b1
(
µ2 − a6

)
= 0, (49)

b1
(
−2µ2 + a2b

2
1 + a3b

2
2

)
= 0, (50)

b1
(
a1b

4
1 + a4b

2
1b

2
2 + a6b

4
2

)
= 0. (51)
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Now substituting these ansätze into Eq. (15) gives
b2
(
µ2 − a6

)
= 0, (52)

b2
(
−2µ2 + a2b

2
2 + a3b

2
1

)
= 0, (53)

b2
(
a1b

4
2 + a4b

2
1b

2
2 + a6b

4
1

)
= 0. (54)

The above set of equations can be readily solved to obtain
the following expressions for the solitons parameters:

µ = ±
√
a6, (55)

b2 = ±b1 = ±
√

2a6
a2 + a3

, (56)

and the condition: a1 + a4 + a6 = 0. From these expres-
sions it is obvious that a6 > 0 and a2 + a3 > 0 must be
satisfied for the existence of the soliton pair solutions (47)
and (48). By combining Eqs. (5), (6), (47) and (48), we
obtain a chirped soliton pair solutions of the form

q1(z, τ) = b1 sech (µ(τ − uz)) e i (χ(ξ)−kz), (57)

q2(z, τ) = ±b1 sech (µ (τ − uz)) e i (χ(ξ)−kz), (58)
which exist provided that γη + 2δr = 0, 3γ + 2δ = 2γη,
a1 + a4 + a6 = 0, a6 > 0, and a2 + a3 > 0.

Figure 3a and b display the intensity profiles of the soli-
ton pair solutions q1 and q2 at z = 0 for the following val-
ues of the model parameters: α = 1.6001, s = −2.6885,
σ = 2, γ = 0.30814, η = 3.98601, δ = 0.76604, r =
−0.801687, θ = −0.1174, u = −30.1280, k = −150.2856,
λ = 1, and Γ = 0.4194. These two solitons are bright-
type pulses. We clearly see that the present solutions pair
possess the same intensity profile in both components q1
and q2.

The substitution of the solutions (47) and (48) into
Eq. (12) yields the chirp associated with the optical
pulses

δω(τ, z) = −2pb21 sech2 (µξ)− q. (59)
The corresponding pulse chirp obtained for the same val-
ues of parameters is shown in Fig. 3c.

3.4. Case IV
Let us now focus on kink type solitons using ansätze

solution of the form [11]:
A(ξ) = ϕ+ κ tanh(µξ), (60)

B(ξ) = ϕ− κ tanh(µξ), (61)
where ϕ and κ are real constants to be determined by
the physical parameters of the model.

Upon substituting these expressions into Eqs. (14)
and (15) and collecting all the terms of the same power
of sech i (µξ) and sech i(µξ) tanh (µξ) for i = 0, 2, 4, we
can get the algebraic equations
−a1ϕ

(
ϕ4 + 10ϕ2κ2 + 5κ4

)
+ a2ϕ

(
ϕ2 + 3κ2

)
+a3ϕ

(
ϕ2 − κ2

)
− a4ϕ

(
ϕ2 − κ2

)2
−a6ϕ

(
ϕ2 + 3κ2

) (
ϕ2 − κ2

)
− a6ϕ = 0, (62)

10a1ϕκ
2
(
κ2 + ϕ2

)
+ (a3 − 3a2)ϕκ

2

−2a4ϕκ2
(
ϕ2 − κ2

)
− 2a6ϕκ

2
(
3κ2 − ϕ2

)
= 0, (63)
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Fig. 3. Intensity profile for the (a) bright soli-
ton |q1(0, τ)|2 as a function of τ as computed
from Eq. (57) and (b) bright soliton |q2(0, τ)|2 as com-
puted from Eq. (58). (c) Chirping profile of soliton pair
as a function of τ as computed from Eq. (59). The pa-
rameters are given in the text.

ϕκ4 (5a1 + a4 − 3a6) = 0, (64)

2κµ2 − 2a1κ
3
(
κ2 + 5ϕ2

)
+ (a2 + a3)κ

3

+2a4κ
3
(
ϕ2 − κ2

)
− 2a6κ

3
(
κ2 + ϕ2

)
= 0, (65)

κ6 (a1 + a4 + a6) = 0, (66)

a1κ
(
κ4 + 10ϕ2κ2 + 5ϕ4

)
− a2κ

(
κ2 + 3ϕ2

)
+a3κ

(
ϕ2 − κ2

)
+ a4κ

(
ϕ2 − κ2

)2
+a6κ

(
κ4 + 2ϕ2κ2 − 3ϕ4

)
+ a6κ = 0. (67)

Solving Eqs. (64) and (66) yield the necessary conditions
for the existence of the present soliton pair solution:
a4 + 2a6 = 0 and a1 = a6. If we insert these conditions
into Eqs. (62) and (67), one gets ϕ = ±κ. Substituting
this latter relation into Eqs. (63), (65) and (67), we
obtain

ϕ = ±κ =
1

4

√
3a2 − a3

a1
, (68)
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µ =
1

4

√
(a2 − a3) (3a2 − a3)

a1
, (69)

and the constraint of the system parameters:
(3a2 − a3) (a2 + a3) = 16a1a6. Notice that the
pulse parameters ϕ, κ, and µ exist provided that
a1 (3a2 − a3) > 0 and a2 > a3.

Substitution of the traveling wave solutions (60)
and (61) in Eqs. (5) and (6) yields the following dark-
dark soliton pair solutions to Eqs. (3) and (4) :

q1(z, τ) = [ϕ+ κ tanh (µ (τ − uz))] e i (χ(ξ)−kz), (70)

q2(z, τ) = [ϕ− κ tanh (µ (τ − uz))] e i (χ(ξ)−kz), (71)
which exist provided that the previous parametric con-
ditions are satisfied [namely, a1 = a6, a4 + 2a6 = 0,
(3a2 − a3) (a2 + a3) = 16a1a6, a1 (3a2 − a3) > 0 and
a2 > a3].
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Fig. 4. Intensity profile for the (a) kink-shaped soliton
|q1(0, τ)|2 as a function of τ as computed from Eq. (70)
and (b) antikink-shaped soliton |q2(0, τ)|2 as computed
from Eq. (71). (c) Chirping profile of soliton pair as a
function of τ as computed from Eq. (72). The parame-
ters are given in the text.

Figure 4a and b illustrate the intensity profiles of the
above soliton pair for parameter values: α = 1.6001, γ =
0.30814, δ = 0.15407, η = 2, Γ = 3, s = 2.6885, σ = 2

3 ,

r = −2, θ = −0.0074175, u = 4.1184, λ = 1.1841064
and k = −179.599. Clearly, the profiles of the waves q1
and q2 represent the kink-shaped and anti-kink-shaped
soliton pulses, respectively. These pulses may undistort-
edly propagate in normal-dispersion regime under the
constraint a2 > a3, which is obtainable for a positive
GVD parameter satisfying the condition α > uγ(1−η)

2(s−σs−λ) .
The corresponding chirp takes the expression:

δω(τ, z) = −2p
[
ϕ2 + κ2 tanh2(µξ)

]
− q. (72)

Finally, Fig. 4c shows the pulse chirp obtained for the
same values of parameters.

3.5. Case V

Next we consider bright-bright type solutions using the
ansätze [31]:

A(ξ) =
C1√

D1 + cosh(µξ)
, (73)

B(ξ) =
C2√

D2 + cosh(µξ)
, (74)

where Cl (l = 1, 2) represents the amplitude of the soli-
tons for the two components q1 and q2, respectively, and
µ is the inverse width of the solitons in both compo-
nents. Substituting these ansätze into Eqs. (14) and (15)
and setting the coefficients of the linearly independent
functions to zero leads to

−a6C2
4D1

2 − 1

4
D2

(
4a4C1

2C2
2D1 + 4a1C1

4D2

−4D1

(
a3C2

2D1 + a2C1
2D2 − a6D1D2

)
+3D2µ

2
)
= 0, (75)

−2a6C2
4D1 + a3C2

2D1
2 − 2a1C1

2D2 + 2a2C1
2D1D2

+2a3C2
2D1D2 − 2a6D1

2D2 + a2C1
2D2

2

−2a6D1D2
2 − a4C1

2C2
2 (D1 +D2)

−1

2
D2 (3 +D1D2)µ

2 = 0, (76)

−a1C1
4 − a4C1

2C2
2 − a6C2

4 + a2C1
2D1 + 2a3C2

2D1

−a6D1
2 + 2a2C1

2D2 + a3C2
2D2 − 4a6D1D2

−a6D2
2 +

1

4

(
−3− 4D1D2 +D2

2
)
µ2 = 0, (77)

a2C1
2 + a3C2

2 − 2a6 (D1 +D2)

+
1

2
(−D1 +D2)µ

2 = 0, (78)

−a1C2
4D1

2 −D2

{
C2

2D1

(
a4C1

2 − a2D1

)
+
[
a6C1

4

+D1

(
−a3C1

2 + a6D1

)]
D2

}
− 3D1

2µ2

4
= 0, (79)

−2a1C2
4D1 + a2C2

2D1
2 − 2a6C1

4D2 + 2a3C1
2D1D2

+2a2C2
2D1D2 − 2a6D1

2D2 + a3C1
2D2

2

−2a6D1D2
2 − a4C1

2C2
2 (D1 +D2)
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−1

2
D1 (3 +D1D2)µ

2 = 0, (80)

−a6C1
4 − a4C1

2C2
2 − a1C2

4 + a3C1
2D1

+2a2C2
2D1 − a6D1

2 + 2a3C1
2D2 + 2a2C2

2D2

−4a6D1D2 − a6D2
2

+
1

4

(
−3 +D1

2 − 4D1D2

)
µ2 = 0, (81)

a3C1
2 + a2C2

2 − 2a6 (D1 +D2)

+
1

2
(D1 −D2)µ

2 = 0, (82)

−a6 +
µ2

4
= 0. (83)

By solving the above equations we can determine the soli-
tons parameters as follows:

µ = ±2
√
a6, (84)

D2 =
a3C1

2 + a2C2
2

4a6
, (85)

D1 =
a2C

2
1 + a3C

2
2

4a6
, (86)

C2 = −C1

√
5a2a3 − 2a23 − 8a4a6 +M/2

3a22 − 16a1a6
, (87)

where M2 = (−10a2a3 + 4a23 + 16a4a6) − 4(−3a22 +
16a1a6)(48a

2
6 + 4a2a3 − 7a23 + 16a6a6).

Substituting (73) and (74) into (5) and (6), one can
obtain new chirped bright-bright soliton solutions for
Eqs. (3) and (4) as

q1(z, τ) =
C1√

D1 + cosh (µ (τ − uz))
e i (χ(ξ)−kz), (88)

q2(z, τ) =
C2√

D2 + cosh (µ (τ − uz))
e i (χ(ξ)−kz), (89)

which exist provided that a6 > 0 and(
16a1a6 − 3a22

) [
2
(
5a2a3 − 2a23 − 8a4a6

)
+M

]
< 0.

In this case, the resulting intensity profiles will present
the same shape as the ones derived in case III and the
only difference concerns the maximum value of intensity
which depends crucially on the pulse parameters and
the conditions of existence of solutions.

Then substituting the above solutions into (12), we
find that the corresponding chirping is given by

δω(τ, z) = (90)

−p
(

C2
1

D1 + cosh(µξ)
+

C2
2

D2 + cosh(µξ)

)
− q.

4. Conclusion

In this paper, we have investigated the propagation
of chirped femtosecond solitons in a birefringent op-
tical fiber that is described by two coupled nonlinear
Schrödinger equations. The model used involves cubic-
quintic nonlinearity, self-steepening, self-frequency shift

and the four-wave mixing term. After introducing a new
ansatz that includes a novel form of chirping, the so-
lutions were investigated within the framework of a set
of coupled nonlinear ordinary differential equations in-
volving many parameters. Various pairs of soliton so-
lutions including bright-W shaped, kink and anti-kink,
and bright-bright soliton pairs are derived, together with
the nonlinear chirp that accompanied the existing pulses.
The existence domain for the chirped soliton pair solu-
tions has been found in the coupled NLS equations pa-
rameter set. This constitutes the first investigation of the
existence of a variety of interesting soliton pair solutions
with nonlinear chirping in birefringent fibers exhibiting
higher-order effects. The obtained results are of interest,
in particular, for possible chirped-soliton-based applica-
tions of highly birefringent fiber systems.

Future research problems for us include how to ex-
tend the proposed ansatz to find the nonlinear chirp that
accompanied propagating soliton pulses for a set of N
coupled nonlinear Schrödinger-type equations. It also
remains open how to find chirped solitons for coupled
wave equations describing the interaction of a fundamen-
tal wave and its second harmonic in a quadratic nonlinear
optical medium.

Acknowledgments

The work of third author DM is supported by the Min-
istry of Education, Sciences and Technological Develop-
ment of Republic Serbia (grants III 44006 and TR 32051).

This research is funded by Qatar National Research
Fund (QNRF) under the grant number NPRP 6-021-1-
005. The second and fourth authors (Anjan Biswas and
Milivoj Belic) thank fully acknowledge this support from
QNRF. The authors declare that there is no conflict of
interest.

References

[1] G.P. Agrawal, Nonlinear Fiber Optics, Academic,
New York 1995.

[2] A. Hesegawa, Y. Kodama, Solitons in Optical Com-
munication, Oxford University Press, Oxford 1995.

[3] P.K. Shukla, B. Eliasson, Phys. Usp. 53, 51 (2010).
[4] F. Smirnov, Form Factors in Completely Integrable

Models of Quantum Field Theory, World Sci., Singa-
pore 1992.

[6] Min Li, Bo Tian, Wen-Jun Liu, Hai-Qiang Zhang,
Pan Wang, Phys. Rev. E 81, 046606 (2010).

[6] Shaowu Zhang, Lin Yi, Phys. Rev. E 78, 026602
(2008).

[7] V.M. Vyas, P. Patel, P.K. Panigrahi, C.N. Kumar,
W. Greiner, Phys. Rev. A 78, 021803 (R) (2008).

[8] K. Porsezian, B. Kalithasan, Chaos Solitons Fract.
31, 188 (2007).

[9] H. Triki, F. Azzouzi, Ph. Grelu, Opt. Commun. 309,
71 (2013).

[10] F. Azzouzi, H. Triki, Ph. Grelu, Appl. Math. Modell.
39, 1300 (2015).

http://dx.doi.org/10.3367/UFNe.0180.201001b.0055
http://dx.doi.org/10.1103/PhysRevE.81.046606
http://dx.doi.org/10.1103/PhysRevE.78.026602
http://dx.doi.org/10.1103/PhysRevE.78.026602
http://dx.doi.org/10.1103/PhysRevA.78.021803
http://dx.doi.org/10.1016/j.chaos.2005.09.044
http://dx.doi.org/10.1016/j.chaos.2005.09.044
http://dx.doi.org/10.1016/j.optcom.2013.06.039
http://dx.doi.org/10.1016/j.optcom.2013.06.039
http://dx.doi.org/10.1016/j.apm.2014.08.011
http://dx.doi.org/10.1016/j.apm.2014.08.011


726 H. Triki et al.

[11] H. Triki, A. Biswas, Math. Methods Appl. Sci. 34,
958 (2011).

[12] S.L. Palacios, A. Guinea, J.M. Fernández-Díaz,
R.D. Crespo, Phys. Rev. E 60, R45 (1999).

[13] Yongsheng Tao, Jingsong He, Phys. Rev. E 85,
026601 (2012).

[14] Wei-Ping Zhong, M. Belić, Phys. Rev. E 82, 047601
(2010).

[15] N.Z. Petrović, M. Belić, Wei-Ping Zhong, Phys.
Rev. E 83, 026604 (2011).

[16] Wen-Jun Liu, Bo Tian, Hai-Qiang Zhang, Tao Xu,
He Li, Phys. Rev. A 79, 063810 (2009).

[17] A. Biswas, Phys. Lett. A 372, 5941 (2008).
[18] Z. Li, L. Li, H. Tian, G. Zhou, Phys. Rev. Lett. 84,

4096 (2000).
[19] A. Choudhuri, K. Porsezian, Opt. Commun. 285,

364 (2012).
[20] K.M. Spaulding, D.H. Yong, A.D. Kim, J.N. Kutz,

J. Opt. Soc. Am. B 19, 1045 (2002).
[21] Xing Lü, Bo Tian, Phys. Rev. E 85, 026117 (2012).
[22] I.P. Kaminow, IEEE J. Quantum Electron. 17, 15

(1981).

[23] Alka, A. Goyal, R. Gupta, C.N. Kumar, T.S. Raju,
Phys. Rev. A 84, 063830 (2011).

[24] C.N. Kumar, P. Durganandini, Pramana J. Phys.
53, 271 (1999).

[25] M. Desaix, L. Helczynski, D. Anderson, M. Lisak,
Phys. Rev. E 65, 056602 (2002).

[26] V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev.
Lett. 90, 113902 (2003).

[27] R. Radhakrishnan, A. Kundu, M. Lakshmanan,
Phys. Rev. E 60, 3314 (1999).

[28] Pan Wang, Bo Tian, Opt. Commun. 285, 3567
(2012).

[29] Feng-Hua Qi, Bo Tian, Xing Lü, Rui Guo, Yu-
Shan Xue, Commun. Nonlin. Sci. Numer. Simulat.
17, 2372 (2012).

[30] A.H. Bhrawy, A.A. Alshaery, E.M. Hilal, M. Savescu,
D. Milovic, K.R. Khan, M.F. Mahmood, Z. Jovanoski,
A. Biswas, Optik 125, 4935 (2014).

[31] D. Milović, A. Biswas, Serb. J. Electr. Eng. 10, 365
(2013).

http://dx.doi.org/10.1002/mma.1414
http://dx.doi.org/10.1002/mma.1414
http://dx.doi.org/10.1103/PhysRevE.60.R45
http://dx.doi.org/10.1103/PhysRevE.85.026601
http://dx.doi.org/10.1103/PhysRevE.85.026601
http://dx.doi.org/10.1103/PhysRevE.82.047601
http://dx.doi.org/10.1103/PhysRevE.82.047601
http://dx.doi.org/10.1103/PhysRevE.83.026604
http://dx.doi.org/10.1103/PhysRevE.83.026604
http://dx.doi.org/10.1103/PhysRevA.79.063810
http://dx.doi.org/10.1016/j.physleta.2008.07.052
http://dx.doi.org/10.1103/PhysRevLett.84.4096
http://dx.doi.org/10.1103/PhysRevLett.84.4096
http://dx.doi.org/10.1016/j.optcom.2011.09.043
http://dx.doi.org/10.1016/j.optcom.2011.09.043
http://dx.doi.org/10.1364/JOSAB.19.001045
http://dx.doi.org/10.1103/PhysRevE.85.026117
http://dx.doi.org/10.1109/JQE.1981.1070626
http://dx.doi.org/10.1109/JQE.1981.1070626
http://dx.doi.org/10.1103/PhysRevA.84.063830
http://dx.doi.org/10.1103/PhysRevE.65.056602
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevLett.90.113902
http://dx.doi.org/10.1103/PhysRevE.60.3314
http://dx.doi.org/10.1016/j.optcom.2012.04.023
http://dx.doi.org/10.1016/j.optcom.2012.04.023
http://dx.doi.org/10.1016/j.cnsns.2011.10.017
http://dx.doi.org/10.1016/j.cnsns.2011.10.017
http://dx.doi.org/10.1016/j.ijleo.2014.04.025
http://dx.doi.org/10.2298/SJEE130824009M
http://dx.doi.org/10.2298/SJEE130824009M

