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A rate equations model for lasers with homogeneously broadened gain is written and solved in both time and
frequency domains. The model is applied to study the dynamics of laser lineshape and linewidth using the example
of He–Ne laser oscillating at λ = 632.8 nm. Saturation of the frequency spectrum is found to take much longer time
compared to the saturation time of the overall power. The saturated lineshape proves to be Lorentzian, whereas
the unsaturated line profile is found to have a Gaussian peak and a Lorentzian tail. Above threshold, our numerical
results for the linewidth are in good agreement with the Schawlow–Townes formula. Below threshold, however, the
linewidth is found to have an upper limit defined by the spectral width of the pure cavity. Our model provides a
unique and powerful tool for studying the dynamics of the frequency spectrum for different kinds of laser systems,
and is also applicable for investigating lineshape and linewidth of pulsed lasers.
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1. Introduction

Laser lineshape and linewidth play a key role in the-
oretical studies related to the fields of resonance ion-
ization spectroscopy (RIS) [1, 2], laser isotope separa-
tion [3], as well as resonance ionization mass spectrome-
try (RIMS) [4]. The first treatment of laser linewidth was
conducted by Schawlow and Townes in the late 1950s.
They considered the laser as a selective amplifier with a
noise source due to the spontaneously emitted photons,
and found that the linewidth decreases in inverse pro-
portion to the laser power [5]. Extremely small widths
of the order of a few Hz were predicted for reliable val-
ues of the laser power. Later on, several approaches have
been used to develop a comprehensive laser theory ca-
pable of describing lineshape and linewidth of the laser
radiation. In Lamb’s laser theory, the laser field is de-
scribed by the classical Maxwell equations and the ac-
tive atoms are accounted for by a nonlinear macroscopic
polarization vector in phase with the field [6, 7]. In the
quantum noise theory developed by Lax et al. the laser is
treated as a rotating-wave Van der Pol oscillator with a
quantum noise source due to spontaneous emission [8, 9].
Haken’s quantum statistical theory of laser starts with
the Schrödinger equation for the laser system plus its en-
vironment, reduces that equation in a first step to the
master equation for the density operator and transforms
the latter operator equation, further on, into a Fokker–
Planck equation for the probability density of the com-
plex laser field amplitude [10].

Actually, all these models have two characteristics in
common: first, they provide a solution for the lineshape
and linewidth under steady state conditions, i.e. they
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give no information about the dynamics of lineshape and
linewidth. Second, their way of calculating lineshape and
linewidth leads through the implicit assumption that the
laser field can be represented by a complex amplitude
oscillating at the resonance frequency of the pure cav-
ity, which is equivalent to requiring the solutions for the
laser field to be self-consistent. In this context, the fi-
nite linewidth of the laser radiation is not related to the
existence of solutions at frequencies other than the reso-
nance frequency, it is just the fingerprint of the statistical
fluctuations of the complex amplitude when transformed
into the frequency domain. The Fokker–Plank equation
divides these statistical fluctuations into a drift term and
a diffusion term. The former is assigned the coherent
amplitude fluctuations related to the cavity loss and the
amplification by stimulated emission, whereas the latter
term is assigned the incoherent phase fluctuations due to
spontaneous emission [11]. Under steady state conditions
the drift term is set to zero, whereas the diffusion term,
which describes a temporal phase noise caused by spon-
taneously emitted photons, is translated into a spectral
line profile by means of the Wiener–Kintchine theorem.

Recently, an alternative, quite different approach to
calculating laser lineshape and linewidth was presented
by the author of this study [12]. This alternative ap-
proach is based on extending Einstein’s laser rate equa-
tions into the frequency domain and solving the time- and
frequency-dependent rate equations free from the artifi-
cial boundaries connected with requiring self-consistency
of the laser field. Promising results have been achieved
for homogeneously, as well as for inhomogeneously broad-
ened gain profile. The lineshape was proved to follow
a Lorentzian; the linewidth was found to saturate at a
value close to the cavity width in the case of inhomo-
geneous gain, and to continue decreasing to very small
values limited only by the finite resolution of the nu-
merical calculation in the case of homogeneous gain.
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However, in order to make the rate equations model
of [12] capable of producing quantitative rather than
qualitative results on the dynamics of laser lineshape and
linewidth for a laser with homogeneously broadened gain,
further improvement needs to be attained on both the
physical as well as the technical level. Addressing this
task is the main subject of the present work. A detailed
description of the improved model is given in the next
section highlighting the changes made to the rate equa-
tions of [12]. Afterwards, the model is applied to inves-
tigate the dynamics of laser lineshape and linewidth, as
well as the relationship between the linewidth and the
laser power. Results are discussed in comparison with
theoretical as well as experimental data available in the
literature. We will refer to the example of He–Ne laser
oscillating at λ = 632.8 nm, however, the concept of
the model is universal and can, therefore, be considered
applicable to other kinds of lasers with homogeneously
broadened gain.

2. The model

Our rate equations follow the main lines of the common
concept used by Burak et al. for small gain lasers [13], as
well as by Rigrod [14] and Kaufman et al. [15] for high
gain lasers. However, our treatment distinguishes itself
from earlier works in two aspects: (a) we write and solve
the laser rate equations in both time and frequency do-
mains; and (b) we incorporate the spectral effect of the
cavity into the laser rate equations instead of adopting
predefined cavity modes. As explained in [12], these two
additions give our model the capability of providing an
independent calculation of the dynamics of the laser fre-
quency spectrum in contrast to conventional rate equa-
tions models which are restricted to the dynamics of the
integral intensities of a few predefined modes.

Within the framework of an idealized four-level for-
malism, which is quite sufficient for the purpose of the
present study, our set of rate equations consists of two
equations for the rate of change of the population den-
sity M1,2 of the lower, respectively the upper laser state,
as well as a third equation describing the rate of change
of the spectral density n(ν)dν of photons propagating
along the optical axis inside the cavity. The first two
rate equations read as follows:

d

dt
M1 = β +A21M2 −A10M1, (1)

d

dt
M2 = −β − (A21 +A20)M2 + Φ, (2)

where β is the rate of stimulated emission, A21 is the Ein-
stein coefficient for spontaneous decay of the upper state
into the lower one, A10 and A20 are the decay rates of the
lower, respectively the upper state into the ground state,
and Φ is the pumping rate. The third equation expresses
the fact that the rate of change of the photon spectral
density inside the cavity is the sum of three effects: the
spontaneous emission, the stimulated emission, and the
cavity losses

d

dt
n (ν) dν = ṅsp (ν) dν + ṅst (ν) dν + ṅc (ν) dν. (3)

Spontaneously emitted photons follow, in general, a
Lorentzian distribution L(ν)dν characterized by the
transition frequency ν0 and the homogeneous width Γh.
However, the quantum electrodynamics tells us that the
probability for emitting a photon is proportional to the
intensity of the electromagnetic wave associated with
that photon [16]. For a photon being emitted along the
optical axis of the cavity, the associated wave will un-
dergo multiple reflections on the cavity mirrors, and the
intensity will experience an enhancement/inhibition by
a cavity specific, frequency sensitive factor Ac(ν) due to
constructive/destructive single photon interference [12].
Therefore, the first term on the right hand side of Eq. (3)
can be written as

ṅsp (ν) dν = A21M2ξ
lm
lc
L (ν) dνAc (ν) , (4)

where ξ is a geometrical factor accounting for the limited
solid angle of the optical axis, lm/lc is the ratio of the
active medium length to the cavity length. Considering
the cavity as a Fabry–Perot resonator, characterized by
its length lc and the mirror reflectivities R1 and R2, the
cavity specific enhancement factor Ac(ν), to be referred
to in the following as the spectral function of the cavity,
can be calculated as

Ac (ν) =
1

1 +R1R2 − 2
√
R1R2 cos δ (ν)

, (5)

where δ(ν) refers to the round trip phase shift given by
δ(ν) = 4πlcν/c [12]. Note that the enhancement of spon-
taneous emission when the emitting atoms/molecules are
located inside a cavity was first reported by Purcell as
early as in the 1940s, and is since then known as the
Purcell effect. According to the original work of Purcell,
the enhancement factor, also referred to as the Purcell
factor, is proportional to the quality factor of the cav-
ity [17]. With this in mind, our spectral function of the
cavity Ac(ν), given by Eq. (5), may be considered as our
ansatz for the frequency dependent Purcell factor.

The second term on the right hand side of Eq. (3)
describes the contribution of stimulated emission to the
rate of change of n(ν)dν, and can be related to the sin-
gle pass gain G(ν) by considering the propagation of the
beam along the optical axis inside the cavity. The beam
passes through the active medium tube, on the average,
once each half round trip time lc/c being thereby ampli-
fied by G(ν), and hence, the rate of change of n(ν)dν
due to stimulated emission can be written as follows:

ṅst (ν) dν =
c

lc
[G (ν)− 1]n (ν) dν. (6)

The single pass gain G(ν) is a function of the population
inversion and can be approximated by

G (ν) = exp ((g1M2 − g2M1)σc (ν) lm) , (7)
where g1 and g2 are the degeneracy factors of the lower
and upper states, respectively, and σc(ν) is the cross-
section for a photon with the frequency ν, propagating
along the optical axis of the cavity, to stimulate a tran-
sition from the upper into the lower state.
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The cavity dependent stimulated emission cross-
section σc(ν) has the form

σc (ν) = σ0
Γ 2
h

4 (ν − ν0)
2

+ Γ 2
h

Ac (ν) , (8)

where σ0 is the stimulated transition cross-section at ν0,
the Lorentzian factor accounts for the deviation from the
central frequency ν0, and the spectral function of the cav-
ity Ac(ν) accounts for the enhancement/inhibition of the
emission probability due to single photon interference.

The third term on the right hand side of Eq. (3) rep-
resents the rate of change of n(ν)dν due to cavity losses,
and is well approximated by the mean cavity loss over
a round trip time 2lc/c. During a round trip, the beam
is reflected once on each of the two mirrors, the corre-
sponding loss of n(ν)dν is given by (1 − R1R2)n(ν)dν,
and accordingly, the rate of change of n(ν)dν due to the
cavity losses can be set to

ṅc (ν) dν = − c

2lc
(1−R1R2)n (ν) dν. (9)

Finally, the overall rate of stimulated emission β can be
derived by integrating ṅst (ν) dν over all frequencies

β =
lc
lm

∫
ν

ṅst (ν) dν,

where the factor in front of the integral accounts for the
fact that photons are distributed along the full cavity
length lc, whereas stimulated emission takes place only
along the length of the active medium tube lm. Making
use of Eq. (6), the rate of stimulated emission can be
written as follows:

β =
c

lm

∫
ν

[G (ν)− 1]n (ν) dν. (10)

With the aid of Eqs. (4)–(10), the set of rate Eqs. (1)–(3)
can be solved by means of numerical integration. The re-
sults provide an insight into the dynamics of the laser fre-
quency spectrum which is the main subject of the present
study. In addition, special focus will also be placed on
the relationship between linewidth and power. The lat-
ter is related to the frequency-integrated photon density
according to

P = hν0c (1−R2) s

∫
ν

n (ν) dν, (11)

where s is the geometrical cross-section of the laser beam.

One of the important questions one may raise, when
reviewing the model presented above, concerns the ab-
sence of power broadening. In fact, power broadening
could be expected to play an essential role, at least when
tuning the pump rate, and consequently the laser power,
to large values. In order to clarify this question it is
helpful to call in mind that power broadening is not an
elementary effect, but just the result of folding the actual
population densities with the elementary lineshape of the
transition. Large values of pump rate and power are ca-
pable of changing the population densities, but not the
elementary lineshape of the transition. In other words,

large values of pump rate and power have no direct im-
pact on the lineshape itself, but a rather indirect one
which is implicitly accounted for in our rate equations by
tracing the dynamics of the population densities.

Now before moving on to applying the model on the
example of He–Ne laser and analyzing the dynamics of
lineshape and linewidth, it is worth highlighting what
is actually new in the formalism presented above com-
pared with the rate equations of [12]. Indeed, Eqs. (1),(2)
are identical with the corresponding Eqs. (6),(7) of [12].
However, Eq. (3) distinguishes itself from the correspond-
ing Eq. (8) of [12] by including a source term ṅsp (ν) dν
which accounts explicitly for the change of the photon
density due to spontaneous emission. This term, spec-
ified in Eq. (4), is of statistical nature and constitutes
an incoherent source term which is completely missing in
Eq. (8) of [12]. Furthermore, from a technical point of
view, the resolution of the numerical calculation in [12]
was limited to about 10 kHz according to the reasonable
limits on the computation time. This insufficiency has
been removed in the present work by introducing a dy-
namical binning which allows for refining the resolution
locally in the unsaturated regions of the spectrum while
keeping the actual resolution unchanged in the saturated
regions. This technique enabled a drastic improvement
of the effective resolution from 10 kHz down to values
smaller than 1 Hz.

3. Results and discussion

In our calculation we will refer to He–Ne laser oscillat-
ing at λ = 632.8 nm since this type of laser had been sub-
ject of extensive studies [18–20] and is, therefore, most
relevant for the purpose of comparison. The adopted val-
ues for the various parameters are listed in Table I. The
gain is assumed to be homogeneously broadened with a
reliable width of 50 MHz involving the natural linewidth
of 19 MHz [25] as well as an additional contribution due
to pressure broadening. The values for the parameters
of the resonator are chosen to support single mode op-
eration and to reproduce the cavity width of 4.7 MHz
reported in [20]. A closer analysis reveals, however, that
single mode operation in a real He–Ne laser requires the
cavity length to be smaller than 11 cm. So, strictly speak-
ing, if we would consider not only the homogeneous but
also the inhomogeneous broadening of the gain profile,
our laser would oscillate not only at the central mode, but
also at two additional, relatively weak, side modes sep-
arated by about 1 GHz from the much stronger central
mode. However, it can be argued that the consequences
for the dynamics of the lineshape and linewidth — the
main topic of the present study, as well as for the rela-
tionship between the linewidth and the power, are rather
negligible, since the central mode is quite well separated
from the side modes due to the large mode spacing of
about 20 times the homogeneous width. On the other
hand, it is worth noting once more that the validity of
our rate equations is not restricted to a certain type of
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laser, and the model presented above can be considered
applicable to different types of lasers with homogeneously
broadened gain.

TABLE IAdopted values for the model parameters.

Parameter Value Ref.
upper level — decay constant

degeneracy factor
A20

g2
106 s−1

3
[21]
[22]

lower level — decay constant
degeneracy factor

A10

g1
107 s−1

5
[21]
[22]

Einstein coefficient for
the spontaneous transition 2→1

A21 3.4×106 s−1 [23]

cross-section for the
stimulated transition 1↔2

σ 3×10−13 cm2 [24]

cavity length lc 14 cm
length of the active medium tube lm 10 cm

mirror reflectivities R1

R2

1
0.9724

beam cross section s 1×10−3 cm2

geometrical factor ξ 5.3×10−7

The initial conditions are chosen to match the ex-
perimental conditions prior to turning on the pumping,
i.e. all atoms are assigned to the ground state, and ac-
cordingly, M1 and M2 are initialized to zero. As a result
of the empty laser upper state, emission cannot occur and
therefore, the photon density n(ν)dν is also initialized to
zero. Once the laser is turned on (t = 0), which is done by
switching Φ to the actual value of the pump rate,M2,M1

and n(ν)dν will start to change and are traced with time,
step by step, until steady state values are established. In
each time step, which is a small fraction of the round trip
time, the actual values of M1, M2, and n(ν)dν are used
to calculate G(ν), β, ṅsp (ν) dν, ṅst (ν) dν and ṅc (ν) dν
in sequence. These values are then used to calculate the
actual changes of M1, M2, and n(ν)dν according to the
rate Eqs. (1)–(3). Finally, the new values of M1, M2 and
n(ν)dν are determined and made available for the next
time step, and so on.

Calculations have been conducted for different values
of the pumping rate Φ. In all calculations, saturation
of the overall power was reached within a faction of µs.
The saturated frequency spectrum was found to be fea-
tured by a single mode coinciding with the strongest cav-
ity mode, a Lorentzian lineshape, and a linewidth much
smaller than Γh. For small values of the pumping rate Φ,
saturation of the frequency spectrum occurred more or
less in time with the saturation of the overall power, and
the saturated linewidth was close to the spectral width
of the pure cavity Γc. However, when Φ is increased
above a certain threshold value Φth, the saturation time
of the frequency spectrum turns out to dramatically ex-
ceed the saturation time of the power, and the linewidth
is found to drop to extremely small values far below Γc.
This is illustrated in Fig. 1 by comparing the saturation
curves of power and linewidth for two different values of
the pumping rate below and above threshold. As seen in
the figure, an increase of Φ by less than factor 10 causes

the saturation time of the linewidth to increase by more
than 7 orders of magnitude (from 0.5 µs to 20 s) and the
saturated linewidth to decrease by 4 orders of magnitude
(from 4.2 MHz to 400 Hz), whereas the saturation time
of the power changes only slightly by a factor of 1.5 (from
0.4 µs to 0.6 µs).

Fig. 1. Saturation dynamics of power and linewidth
below (upper part) and above threshold (lower part).

First of all, it should be pointed out that the very long
saturation time of the linewidth, when the laser is oper-
ated above threshold, may have substantial consequences
for the laser frequency spectrum. It seems that a real
laser would never have enough time to reach saturation
of the frequency spectrum because there are always more
restrictive time limits due to the technical noise, the lim-
ited pulse duration, as well as the limited temporal coher-
ence. In other words, the process of line-narrowing will
be disturbed at an earlier moment before the linewidth
reaches its saturation value. Unfortunately, there are in
the literature neither experimental nor theoretical data
on the dynamics of laser linewidth to compare with. This
is not surprising since, on the one hand, all available ex-
perimental methods for measuring the laser linewidth in-
volve relatively long measurement times, and on the other
hand, all existing theories for the laser linewidth consider
the situation only under steady state conditions, i.e. after
saturation has occurred.

Nevertheless, it is worth looking at the results pre-
sented in Fig. 1 from the point of view of our rate
Eqs. (1)–(3). Indeed, the reason for the large differ-
ence between the saturation times of power and linewidth
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can be read from the rate equations themselves. From
Eqs. (1) and (2), it is obvious that changes of the popu-
lation densities are not coupled to the detailed structure
of the spectrum, but only to the frequency-integrated
rate of stimulated emission β. Therefore, saturation of
the population densities, as well as of the overall power
which is also an integral quantity, will not be affected by
internal changes in the detailed structure of n(ν)dν as
long as the integrated photon density is unchanged. In-
deed, power saturation is reached generally after a frac-
tion of µs, regardless of the value of Φ. What follows
after that involves exclusively the detailed structure of
n(ν)dν, in particular the linewidth.

In order to get an insight into the physics behind the
drastic change in the linewidth, as well as in its satura-
tion time, when passing from below to above threshold, it
is helpful to consider the laser frequency spectrum as su-
perposition of two different components: a spontaneous
spectrum settled by Eq. (4), and a stimulated spectrum
satisfying Eq. (6). From Eq. (4), it is obvious that spon-
taneously emitted photons obey a stationary distribution
proportional to Ac(ν)L(ν)dν with a linewidth close to Γc

(note that Γc is significantly smaller than Γh). On the
other hand, Eq. (6) tells us that stimulated photons do
not follow a stationary, but a dynamic distribution pro-
portional to the actual photon density n(ν)dν. Indeed,
substituting G(ν) in Eq. (6) by its first order approxima-
tion according to Eq. (7) by making use of Eq. (8), one
arrives at a non-stationary distribution proportional to
Ac(ν)L(ν)n(ν)dν which is, in any case, narrower than
n(ν)dν. And this means that the linewidth of the stim-
ulated component will, necessarily, continue decreasing
steadily with time approaching zero.

Now thinking about the laser frequency spectrum as
composed of a spontaneous component with a linewidth
close to Γc and a stimulated component with a dynamic
linewidth which decreases with time towards zero, one
can expect the laser linewidth to reflect the statistical
average of the linewidths of both components. At the
very early stage after starting the laser, photons are emit-
ted exclusively by means of spontaneous decay, and the
linewidth is determined by Γc. As time goes on, inver-
sion is built up, and the linewidth starts to decrease
due to the increasing contribution of stimulated pho-
tons. Once power saturation is reached, the statistical
weights of both spontaneous and stimulated components
freeze at their actual values. From that point on, the
spontaneous contribution to the linewidth is fixed, but
the laser linewidth will still continue to decrease due to
the decrease of linewidth of the stimulated component.
Saturation of the linewidth will be established when the
weighted stimulated width will have reached values sig-
nificantly smaller than the weighted spontaneous width.
Thus, it can be stated that the saturation value of the
linewidth, as well as its saturation time, are mainly de-
termined by the statistical weight of the spontaneous
component. Below threshold, the statistical weight of
spontaneous photons is close to unity, and consequently,

the linewidth is close to Γc and the saturation time of
the linewidth is close to that of the power (upper part of
Fig. 1). Above threshold however, the statistical weight
of spontaneous photons is very small compared to unity,
and therefore, the linewidth is a very small fraction of Γc

and the saturation time of the linewidth is much larger
than that of the power (lower part of Fig. 1).

At this point, it is worth pointing out why we spec-
ify the threshold point in terms of the threshold pump
rate rather than the threshold inversion commonly used
in the literature. Actually, most of the classical works
on laser operation describe the threshold condition by
setting the total round-trip gain — i.e. the amplification
due to stimulated emission multiplied by the attenuation
due to the cavity losses — equal to unity [25, 26] arriving
at a relation between threshold inversion and loss factor
of the cavity. However, we believe that this characteri-
zation is questionable, because it considers the balance
between stimulated emission and cavity losses neglecting
the contribution of spontaneous emission, which is ex-
pected to be comparable to stimulated emission in the
threshold region. Moreover, in contrast to the inversion,
the pump rate is a directly accessible control parame-
ter which can be easily adjusted to control the gain. For
these reasons, we specify the threshold point by the value
of pump rate at which stimulated emission starts to dom-
inate over spontaneous emission.

We have computed the rate of spontaneous, as well
as stimulated emission, over a wide range of the pump-
ing rate Φ. The results are plotted in the lower part
of Fig. 2, the corresponding values of the overall power
are plotted in the upper part of the figure. It is obvi-
ous from Fig. 2 that spontaneous emission clearly domi-
nates over stimulated emission in the low pump rate re-
gion. However, the rate of stimulated emission increases
more rapidly with increasing pump rate, and reaches
the rate of spontaneous emission at a certain pump rate
Φ = 8.5×1012 cm−3 s−1 which we refer to as the thresh-
old pump rate Φth. Immediately after passing the thresh-
old pump rate Φth, stimulated emission undergoes a very
steep increase at the expense of a similarly steep decrease
of spontaneous emission. Note that the rate of stimulated
emission increases by more than four orders of magnitude
within the very narrow region between Φth and twice Φth

which will be referred to in the following as the thresh-
old region. After leaving the threshold region, stimulated
emission continues to increase steadily with increasing Φ,
whereas spontaneous emission passes first through an in-
termediate region, in which it recovers slowly from the
decrease, and then resumes increasing with increase of Φ.

The upper part of Fig. 2 illustrates that the laser power
simply follows the dominant component of the two emis-
sion rates. Below threshold, the power is proportional to
the rate of spontaneous emission, whereas above thresh-
old, it is proportional to the rate of stimulated emission,
and accordingly, it experiences an increase by more than
four orders of magnitude within the borders of the narrow
threshold region.
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Fig. 2. Threshold characteristics of the power (upper
part) as well as the emission rates for spontaneous and
stimulated photons (lower part).

The next issue to be considered in this dynamical study
of the laser frequency spectrum is the dynamics of the
lineshape. We have revealed in advance, quite at the
beginning of this section, that the saturated lineshape is
found to be Lorentzian. However, thinking about the rel-
atively long saturation time for the laser frequency spec-
trum, which is expected to exceed the coherence time for
many types of laser systems, it is absolutely worth ex-
amining not only the saturated but also the unsaturated
lineshape. We have observed the time evolution of the
lineshape from the moment of starting the laser to the
very late stage of ultimate saturation. The results can
be summarized as follows. The line profile starts with a
Lorentzian shape and a width close to the cavity width
Γc and ends up also with a Lorentzian shape, but with a
linewidth much smaller than Γc. However, the intermedi-
ate line profile deviates significantly from the Lorentzian
shape. It looks closer to a Gaussian in the peak region,
but shares, at the same time, the far tail of the saturated
line profile.

Figure 3 gives an illustration of the saturation be-
haviour of the line profile. The figure shows two different
snapshots of the unsaturated line profile, taken at 0.1
and 0.5 s, in comparison with the Lorentzian-shaped sat-
urated line profile established after about 20 s. On the
basis of Fig. 3, the overall saturation behaviour of the
line profile can be sketched as follows. Saturation occurs

Fig. 3. Saturation dynamics of the lineshape. Snap-
shots of the line profile are shown in a linear (upper
part) and a logarithmic plot (lower part) in order to
depict both the peak and its far tail.

first in the far tail, and moves slowly towards the centre
of the line. In fact, this process shares the same origin as
the saturation process of the linewidth discussed above
in connection with Fig. 1.

Finally, let us move on to the question of the relation-
ship between laser linewidth and laser power, a question
which has been subject of numerous theoretical as well as
experimental investigations. Having the advantage of be-
ing capable to calculate the linewidth below, around, and
above threshold, our model is best suited for a compre-
hensive and independent investigation of the linewidth
vs. power relationship.

In a long series of runs, the saturated linewidth has
been computed over the complete significant range of
laser power, starting at a very low power, 3 orders of mag-
nitude below the threshold power Pth = 8.4 × 10−12 W,
and stopping at an extremely high power, 8 orders of
magnitude above Pth. The results are plotted in Fig. 4
in comparison with the theoretical values (ST and ST-
simplified) predicted according to the Schawlow–Townes
formula

∆ν =
πhν0Γ

2
c

P

M2

M2 − (g2/g1)M1
, (12)

in its entire form, respectively in its widely used simpli-
fied form in which the population factor — last factor in
Eq. (12) — is fixed to unity [20]. Experimental results
from [19] and [20] are also included in the figure.
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Fig. 4. Linewidth vs. laser power in comparison with
the theoretical predictions according to the ST-formula,
as well as the experimental results of [19] and [20] (up-
per part). The corresponding values for the population
densities are plotted in the lower part in order to illus-
trate the validity limit of the simplified ST-formula.

Considering the above-threshold region in Fig. 4, it can
be argued that our results agree quite well with Eq. (12)
and, to within a factor 2, with the experimental results
of [19] and [20]. However, a closer analysis shows that
the linewidth computed by our model should not be di-
rectly compared with Eq. (12), but only to within a
scale factor determined by the values of the parameters
s and ξ which are not involved in Eq. (12). The val-
ues of s and ξ given in Table I were chosen to achieve
best agreement with Eq. (12). In the below-threshold re-
gion, our linewidth approaches an upper limit defined by
the cavity width Γc, whereas the linewidth generated by
Eq. (12) continues increasing unlimitedly with decrease of
power. In fact, we believe that the behaviour of the ST-
linewidth in the below-threshold region, particularly its
unlimited increase towards values exceeding not only the
cavity width but also the source width, is not reasonable.
Moreover, in the original works of Schawlow and Townes,
Eq. (12) was derived by considering the laser as an am-
plifier with a weak input due to thermal radiation [27], or
to spontaneous emission [5], and a much stronger output
due to stimulated emission. This basic condition is by
far not fulfilled below threshold where spontaneous emis-
sion constitutes the dominant component of the output
radiation (see Fig. 2, lower part).

Another exciting behaviour of our calculated linewidth
manifests itself in a deviation from the 1/P dependence,

with a strong tendency to approach a lower limit, when
increasing the laser power far above the threshold. Note
that this behaviour is not an exclusive result of our nu-
merical calculations based on the rate Eqs. (1)–(3). It is
also perfectly reproduced by Eq. (12) when adopting our
saturation values for the population densities (solid line
in the upper part of Fig. 4), whereas the simplified ST-
formula (dashed line in the upper part of Fig. 4) sup-
ports the common picture of an unlimited decrease of
the linewidth with increase of power. This means that
the observed deviation from the 1/P dependence can be
directly ascribed to a considerable deviation of the pop-
ulation factor from unity. According to Eq. (12), the
1/P behaviour of the linewidth corresponds to a constant
value of the population factor, whereas a lower limit of
the linewidth indicates a linear increase of the population
factor with increasing power. In order to understand the
behaviour of population factor when moving towards the
far-above-threshold region, the population densities M1

and M2, as well as the inversion, are plotted as functions
of the laser power in the lower panel of Fig. 4. Now let
us trace the changes of M1 and M2 trying to reconstruct
the behaviour of the population factor, as well as of the
linewidth, in the different regions along the power axis
of Fig. 4. It is quite helpful to distinguish between the
following four regions:

(i) below threshold (P < 10−11 W): M1 and M2 in-
crease steadily with increasing power, M2 is larger
than M1 since the life time of the laser upper
state is longer than the life time of the laser lower
state, inversion builds up but is still too small to
make stimulated emission dominant over sponta-
neous emission, and thus the spectrum is domi-
nated by the spontaneous component (see Fig. 2),
the linewidth has a more or less constant value
close to the cavity width, and the ST-formula is not
applicable;

(ii) threshold region (10−11−10−8 W): inversion has
reached its saturation value, the spectrum is now
dominated by the stimulated component, increas-
ing the power over this region requires only a slight
increase of the pump rate (see Fig. 2) associated
with a rather negligible increase of M1 and M2,
the population factor keeps a constant value close
to unity, and the linewidth follows the famous 1/P
dependence;

(iii) near-threshold region (10−8−10−6 W): increasing
the power over this region requires a considerable
increase of the pump rate (Fig. 2) associated with
a reasonable increase of the population densities,
both M1 and M2 increase by the same value in or-
der to keep the inversion unchanged, however, since
M1 is much smaller than M2, the relative increase
of M1 is large, whereas M2 can still be considered
nearly constant as readily seen in Fig. 4, and conse-
quently, the population factor in Eq. (12) can still
be well approximated to unity, and the linewidth
still follows the 1/P dependence;
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(iv) far-above-threshold region (P > 10−6 W): M1 has
reached a value comparable toM2, further increase
of the power, by means of further increasing the
pump rate, is associated with a linear increase of
bothM1 andM2 whereas the inversion is still keep-
ing its saturation value, the population factor in
Eq. (12) is, therefore, no more constant but in-
creases linearly with increasing power, and conse-
quently, the linewidth approaches a constant value.

For the sake of completeness it should be noted here
that the pump rate values needed to explore the far-
above-threshold region are excessively large, and hardly
accessible in the experiment. Hence, the observed devia-
tion from the simplified ST-formula may be considered,
for the time being, of purely theoretical importance.

4. Conclusions

We have studied the dynamics of laser lineshape and
linewidth by means of numerical calculations based on
solving the rate equations in both time and frequency
domains. It has been found that the saturation of the
frequency spectrum is by several orders of magnitude
slower than the saturation of the overall power. The sat-
urated lineshape proved to be Lorentzian, whereas the
unsaturated line profile turned out to combine a Gaus-
sian peak together with the saturated Lorentzian tail.
To our knowledge, the question of the dynamics of laser
lineshape and linewidth has never been addressed before.
Thus, our model is the first of its kind to provide a pow-
erful tool for studying the dynamics of laser lineshape
and linewidth. One of the important applications would
be to calculate the frequency spectrum for pulsed lasers.

Furthermore, we have applied our numerical model to
investigate the relationship between laser linewidth and
laser power. Our linewidth proved to be in good agree-
ment with the Schawlow–Townes formula over the whole
above-threshold region. Below the threshold, however,
our linewidth approaches an upper limit defined by the
spectral width of the pure cavity, in contradiction to the
widely accepted prediction of semiclassical theories ac-
cording to which the ST-formula is said to remain ap-
plicable below the threshold after multiplying the right
hand side by the scale factor 2. Moreover, our calcula-
tions revealed that the inverse proportion between laser
linewidth and laser power holds only up to a certain
power. Far above threshold, our linewidth is found to
approach a lower limit due to a linear increase of the
population factor with increasing power, and this finding
is supported by the ST-formula itself when adopting the
actual population densities, and is contradictory to the
simplified ST-formula according to which the linewidth
would continue decreasing unlimitedly with increase of
power.
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