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Bound state solutions of the Dirac equation for the pseudoharmonic potential with spin and pseudo-spin

symmetry are studied in this paper. To obtain the exactly normalized bound state wave function and energy
expressions we have used the Laplace transform approach.
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1. Introduction

In the field of relativistic quantum mechanics, the
Dirac equation plays an important role for spin-1/2
particles. This equation has been used extensively to
study the relativistic heavy ion collisions, heavy ion spec-
troscopy and more recently in laser–matter interaction [1]
and condensed matter physics [2].

The most interesting feature for the Dirac equation
is the concept of spin and pseudospin symmetries. Al-
though these symmetries of the Dirac Hamiltonian were
discovered long ago, there has been a renewed interest in
obtaining the solutions of the Dirac equations for some
typical potentials under spin symmetry and pseudo-spin
symmetry cases. The idea about spin symmetry and
pseudo-spin symmetry with the nuclear shell model has
been introduced in [3]. This idea has been widely used
in explaining a number of phenomena in nuclear physics
and related areas. Spin and pseudo-spin symmetric con-
cepts have been used in the studies of certain aspects of
deformed and exotic nuclei.

Spin symmetry is relevant to meson with one heavy
quark, which is being used to explain the absence of
quark spin–orbit splitting (spin doublets) observed in
heavy-light quark mesons [4] and pseudo-spin symmetry
concept has been successfully used to explain different
phenomena in nuclear structure including deformation,
superdeformation, identical bands, exotic nuclei, and de-
generacies of some shell model orbitals in nuclei (pseudo-
spin doublets) [5, 6]. In recent times, many works have
been done to solve the Dirac equation to obtain the
bound states energy spectra and the corresponding eigen-
functions. Ginocchio [7–12] deduced that a Dirac Hamil-
tonian with scalar S(r) and vector V (r) harmonic os-
cillator potentials when V (r) = S(r) possesses a spin
symmetry as well as a U(3) symmetry, whereas a Dirac
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Hamiltonian for the case of V (r) + S(r) = 0 or V (r) =
−S(r) possesses a pseudo-spin symmetry and a pseudo-
U(3) symmetry. As introduced in nuclear theory, the
pseudo-spin symmetry refers to a quasi-degeneracy of the
single-nucleon doublets which can be characterized with
the non-relativistic quantum mechanics (n, l, j = l + 1

2 )

and (n − 1, l + 2, j = l + 3
2 ), where n, l and j are the

single-nucleon radial, orbital and total angular momen-
tum quantum numbers for a single particle, respectively.
The total angular momentum is given as j = l̄+ s̄, where
l̄ = l + 1 is a pseudo-angular momentum and s̄ = 1

2
is a pseudo-spin angular momentum. The orbital and
pseudo-orbital angular momentum quantum numbers for
spin symmetry l and pseudo-spin symmetry l̄ refer to
the upper- and lower-spinor components: Fn,k(r) and
Gn,k(r), respectively.

The spin symmetry occurs when the difference between
the repulsive Lorentz vector potential V (r) and attractive
Lorentz scalar potential S(r) in the Dirac Hamiltonian is
a constant, that is, ∆(r) = V (r) − S(r) = const and
pseudo-spin symmetry occurs when the sum of two po-
tential is a constant, that is, Σ (r) = V (r)+S(r) = const.

Recently, many researchers have applied spin and
pseudo-spin symmetry conditions on a number of po-
tentials. These potentials include: the Hulthén poten-
tial [13], the Eckart potential [14], the Pöschl–Teller po-
tential [15, 16], the Rosen–Morse potential [17], harmonic
potential [18], the Manning–Rosen potential [19], the
Wood–Saxon potential [20], the Kratzer potential with
angle dependent potential [21], the Scarf potential [22],
the Hua potential [23]. In this study we consider the
pseudoharmonic potential [24–26] given as

V (r) = D0

(
r

r0
− r0

r

)2

, (1)

where r0 is an equilibrium distance and D0 is a constant
related to the dissociation energy of a molecule.

There are various methods to solve spin and
pseudo-spin symmetry problems including the centrifu-

(692)

http://dx.doi.org/10.12693/APhysPolA.130.692
mailto:biswasdebnathju@gmail.com


Bound States for Pseudoharmonic Potential of the Dirac Equation. . . 693

gal approximation ranging from the asymptotic iter-
ation method (AIM) [14, 27], the Nikiforov–Uvarov
method (N–U), supersymmetric and shape invariance
method [28]. Recently, solutions of the Schrödinger and
Klein–Gordon (K–G) equations with several potentials
have been investigated using various methods [29–43].
Here we adopt the Laplace transform approach (LTA) to
cultivate the bound state energy eigenvalues and the cor-
responding eigenfunctions for pseudoharmonic potential
with the repulsive Lorentz vector potential V (r) and at-
tractive Lorentz scalar potential S(r) for the Dirac equa-
tion. In order to obtain the relativistic bound state en-
ergy eigenvalues and the corresponding Dirac spinors, we
use a different and very economical method, called the
Laplace transform approach within the framework of the
pseudo-spin and the spin symmetry concept. The LTA
is an integral transform which has been used by many
authors [44, 45].

This work is organized as follows: To make it self-
contained, we present Laplace transform approach with
necessary formulae to perform our calculations in the
next section. In Sect. 3, we have formulated the Dirac
equation to Schrödinger-like equation for suitable appli-
cation of LTA. In Sects. 4 and 5, we consider the spin
symmetric and the pseudo-spin symmetric solutions of
the pseudoharmonic potential for any k state, respec-
tively. The last section is kept for conclusive remark.

2. Laplace transform approach

Suppose the differential equation contain a term of the
form tmy(n)(t) i.e., tm dny(t)

dtn . Then the Laplace trans-
form of the term is represented by

L

(
tm

dny(t)

dtn

)
= (−1)m

dm

dsm
L

(
y(n)(t)

)
. (2)

So,

L[ty′′(t)] = (−1)
d

ds
L[y′′(t)]. (3)

Again, another important theorem for Laplace transform
of first order and second order derivative for continuous
y(t) and y′(t) with t ≥ 0 of exponential order σ as t→∞
and if y′(t) and y′′(t) is of class A, then the Laplace trans-
forms of y′(t) and y′′(t) for s > σ are given by

L[y′(t)] = sL[y(t)]− y(0) (4)
and

L[y′′(t)] = s2L[y(t)]− sy(0)− y′(0). (5)
One of the most important formula used in our calcu-

lation is: if y(t) is a function of class A, then

L[tny(t)] = (−1)n
dnf(s)

dsn
, (6)

where f(s) = L[y(t)] =
∫∞

0
y(t)e−tsdt and n = 1, 2, 3, ...

After conversion of second order differential equation
to a first order one, we further apply the inverse Laplace
transform to obtain the wave function. The relevant for-
mulae for inverse Laplace transform are followed from
Ref. [46].

3. Transformation of Dirac equation
to Schródinger-like equation

The Dirac equation of a nucleon with mass M moving
in an attractive scalar potential S(r) and a repulsive vec-
tor potential V (r) for spin- 1

2 particles in the relativistic
unit (~ = c = 1) is [47]:

[αp+ β(M + S(r))]ψ(r) = [E − V (r)]ψ(r), (7)
where E is the relativistic energy of the system, p = − i∇
is the three-dimensional momentum operator and M is
the mass of the fermionic particle. α, β are the 4 × 4
Dirac matrices given as [47]:

α =

(
0 σi
σi 0

)
, β =

(
I 0

0 −I

)
, (8)

where I is a 2×2 unit matrix and σi are the Pauli three-
vector matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 − i

i 0

)
, σ3 =

(
1 0

0 −1

)
.(9)

The eigenvalues of the spin–orbit coupling operator are
k = (j + 1

2 ) > 0, k = −(j + 1
2 ) < 0 for the unaligned

spin j = l − 1
2 and aligned spin j = l + 1

2 , respectively.
The set (H,K, J2, Jz) forms a complete set of conserved
quantities. Thus, we can write the spinors as [47]:

ψnk(r) =
1

r

(
Fnk(r) Y ljm(θ, φ)

iGnk(r) Y l̄jm(θ, φ)

)
, (10)

where Fnk(r), Gnk(r) represent the upper and lower com-
ponents of the Dirac spinors and l̄ is pseudo-orbital an-
gular momentum, which is defined as l̄ = l + 1 for the
aligned spin j = l̄ − 1

2 and l̄ = l − 1 for the unaligned
spin j = l + 1

2 . Y ljm(θ, φ), Y l̄jm(θ, φ) are the spin and
pseudo-spin spherical harmonics and m is the projection
on the z-axis. Using well-known identities,

(σ ·A)(σ ·B) = A ·B + iσ · (A×B),

σ · p = σ · r̂
(
r̂ · p+ i

σ · L
r

)
, (11)

as well as the relations
(σ · L)Y l̄jm(θ, φ) = (k − 1)Y l̄jm(θ, φ),

(σ · L)Y ljm(θ, φ) = −(k + 1)Y ljm(θ, φ),

(σ · r̂)Y ljm(θ, φ) = −Y l̄jm(θ, φ),

(σ · r̂)Y l̄jm(θ, φ) = −Y ljm(θ, φ). (12)
The coupled first-order Dirac equations are(

d

dr
+
k

r

)
Fnk(r) = [M + Enk −∆(r)]Gnk(r), (13)(

d

dr
− k

r

)
Gnk(r) = [M − Enk + Σ (r)]Fnk(r), (14)

where
∆(r) = V (r)− S(r), (15)

Σ (r) = V (r) + S(r). (16)
Eliminating Fnk(r) and Gnk(r) in Eqs. (13) and (14), we
obtain the second-order Schrödinger-like equation
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d2

dr2
− k(k + 1)

r2
− [M + Enk −∆(r)]

× [M−Enk+Σ (r)] +
d∆(r)

dr

(
d
dr + k

r

)
M + Enk −∆(r)

}
Fnk(r) = 0, (17){

d2

dr2
− k(k − 1)

r2
− [M + Enk −∆(r)]

× [M−Enk+Σ (r)] +
dΣ(r)

dr

(
d
dr −

k
r

)
M − Enk − Σ (r)

}
Gnk(r) = 0, (18)

where k(k − 1) = l̄(l̄ + 1) and k(k + 1) = l(l + 1).
We consider bound state solutions that demand the

radial components satisfying Fnk(0) = Gnk(0) = 0 and
Fnk(∞) = Gnk(∞) = 0.

4. Bound state solutions of the pseudoharmonic
potential for the spin symmetric case

In the case of exact spin symmetry d∆(r)
dr = 0, i.e.,

∆(r) = C = const, Eq. (17) becomes{
d2

dr2
− k(k + 1)

r2
− [M + Enk −∆(r)]

× [M − Enk + Σ (r)]

}
Fnk(r) = 0, (19)

where k = l for k < 0 and k = −(l + 1) for k > 0.
The energy eigenvalues depend on n and l, i.e., Enk =
E(n, l(l+1)), which is well known as the exact spin sym-
metry. We assume that

∑
(r) is the pseudoharmonic po-

tential and Eq. (19) takes the form with this potential as{
d2

dr2
− k(k + 1)

r2
− (M + Enk − C)

[
M − Enk

+D0

(
r

r0
− r0

r

)2]}
Fnk(r) = 0. (20)

Now defining the new variable x = r2 and the function
Fnk(r) = x−

ν
2ϕ(x), we get[

x
d2

dx2
−
(
ν − 1

2

)
d

dx
− 1

4
(µ2x− ε2)

]
ϕ(x) = 0, (21)

where
ν(ν + 1) = k(k + 1) + (M + Enk − C)D0r

2
0,

µ2 =
D0

r2
0

(M + Enk − C),

ε2 = (2D0 + Enk −M)(M + Enk − C). (22)
This form of equation is suitable for the application of
LTA which is described above in Sect. 2 and applying
the LTA to the above equation we obtain a first order
differential equation(

t2 − µ2

4

)
df(t)

dt
+

[(
ν +

3

2

)
t− ε2

4

]
f(t) = 0, (23)

where f(t) = L[ϕ(x)] and the solution is given by

f(t) = N
(
t+

µ

2

)−(ν+ 3
2 )
(
t− µ

2

t+ µ
2

) ε2

4µ−
1
2 (ν+ 3

2 )
. (24)

The wave functions required to be single-valued but the

term
(
t−µ2
t+µ

2

) ε2
4µ−

1
2 (ν+ 3

2 )
is multi-valued. Therefore, we

must have to take
ε2

4µ
− 1

2

(
ν +

3

2

)
= n (n = 0, 1, 2, ...). (25)

Now applying a simple series expansion to Eq. (24) we
obtain

f(t) = N ′
n∑

m=0

(−1)mn!

(n−m)!m!

(
t+

µ

2

)−ν+ 3
2−m

, (26)

where N ′ is a constant. Using the inverse Laplace trans-
formation in Eq. (26), we get that

ϕ(x)=N ′′xν+ 1
2 e−

µx
2

n∑
m=0

(−1)mn!

(n−m)!m!

Γ
(
ν + 1

2

)
Γ
(
ν + 3

2 +m
)xm =

N ′′xν+ 1
2 e−

µx
2 1F1

(
−n; ν +

3

2
;x

)
, (27)

where 1F1(−n; ν + 3
2 ;x) is the notation of confluent hy-

pergeometric function [48].
Finally, we obtain the upper component of the Dirac

spinor as

Fnk(r) = Nrν+1 e−
µr2

2 1F1

(
−n; ν +

3

2
; r2

)
, (28)

where N is the normalization constant.
In order to find the lower component spinor, the recur-

rence relation of the confluent hypergeometric function
d

dr
1F1(a; b; r) =

a

b
1F1(a+ 1; b+ 1; r) (29)

is used to evaluate Eq. (13) and this is obtained for spin
symmetry case (i.e. for ∆(r) = C = const) as

Gnk(r) =
Nrν+2 e

µr2

2

M + Enk − C

×

{
−2n

ν + 3
2

1F1

(
−n+ 1; ν +

5

2
; r2

)

+

(
k + ν + 1

r2
− µ

)
1F1

(
−n; ν +

3

2
; r2

)}
. (30)

Using Eqs. (22) and (25), an explicit expression for the
energy eigenvalues of the Dirac equation with the pseu-
doharmonic potential under the spin symmetry condition
is obtained as

r0√
D0

(2D0 + E −M)
√
M + E − C

−
√

(2k + 1)2 + 4D0r2
0(M + E − C) = 4

(
n+

1

2

)
. (31)

According to Ginocchio [12] there are only positive en-
ergy eigenvalues and no bound state negative energy
eigenvalues exist in the spin limit. Therefore, in the spin
limit, only positive energy eigenvalues are chosen.
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5. Bound state solutions of the pseudoharmonic
potential for the pseudo-spin symmetric case

In the case of exact pseudo-spin symmetry d
∑

(r)
dr = 0,

i.e.,
∑

(r) = Cps = const, Eq. (18) becomes{
d2

dr2
− k(k − 1)

r2
− (M + Enk −∆(r))

×(M − Enk + Cps)

}
Gnk(r) = 0, (32)

where k is related to the pseudo-orbital angular quan-
tum number l̄ as k(k − 1) = l̄(l̄ + 1), k = −l̄ for
k < 0 and k = (l̄ + 1) for k > 0, which implies that
j = l̄ ± 1

2 are degenerate for l̄ 6= 0. It is required that
the upper and lower spinor components must satisfy the
following boundary conditions: Fnk(0) = Gnk(0) = 0
and Fnk(∞) = Gnk(∞) = 0 for bound state solu-
tions. The energy eigenvalues depend on n and l̄, i.e.,
Enk = E(n, l̄(l̄ + 1)), which is well known as the exact
pseudo-spin symmetry. We assume that Σ (r) is the pseu-
doharmonic potential and Eq. (32) takes the form with
this potential as{

d2

dr2
− l̄(l̄ + 1)

r2
−
(
M + Enk −D0

(
r

r0
− r0

r

)2)

×
(
M − Enk + Cps

)}
Gnk(r) = 0. (33)

Now applying same procedure as above by defining the
new variable x = r2 and the function Gnk(r) = x−

ν
2ϕ(x),

we get[
x

d2

dx2
−
(
ν − 1

2

)
d

dx
− 1

4
(µ2x− ε2)

]
ϕ(x) = 0, (34)

where
ν(ν + 1) = k(k − 1)− (M − Enk + Cps)D0r

2
0,

µ2 = −D0

r2
0

(M − Enk + Cps),

ε2 = −(2D0 + Enk +M)(M − Enk + Cps). (35)
Equation (37) is similar to Eq. (21) and so, via the cal-
culations like the above one, the lower component of the
Dirac spinor can be obtained as

Gnk(r) = Ñrν+1 e−
µr2

2 1F1

(
− n; ν +

3

2
; r2
)
, (36)

where Ñ is the normalization constant and 1F1

(
−n; ν+

3
2 ; r2

)
is confluent hypergeometric function.

In order to find the upper component spinor, the recur-
rence relation of the confluent hypergeometric function

d

dr
1F1(a; b; r) =

a

b
1F1(a+ 1; b+ 1; r) (37)

is used to evaluate Eq. (14) and this is obtained for
pseudo-spin symmetry case (i.e. for Σ (r) = Cps = const)
as

Fnk(r)=
Nrν+2 e

µr2

2

M − Enk + Cps

[
−2n

ν + 3
2

1F1

(
−n+ 1; ν +

5

2
; r2

)

+

(
ν + 1− k

r2
− µ

)
1F1

(
− n; ν +

3

2
; r2
)]
, (38)

where Ñ is the normalization constant.
Also, in the similar fashion as obtained in the case of

the spin symmetry condition, an explicit expression for
the energy eigenvalues of the Dirac equation with the
pseudoharmonic potential under the pseudospin symme-
try is obtained as

r0√
D0

(2D0 + E +M)
√
E −M − C

−
√

(2k − 1)2 − 4D0r2
0(M − E + C) = 4

(
n+

1

2

)
, (39)

where k(k − 1) = l̄(l̄ + 1). It has been shown that there
are only negative energy eigenvalues and no bound posi-
tive energy eigenvalues exist in the pseudo-spin limit [12].
Therefore, in the pseudo-spin limit, only negative energy
eigenvalues are chosen.

6. Conclusions

In this work, we have obtained the bound state solu-
tions of the Dirac equation with spin and pseudo-spin
symmetry for scalar and vector pseudoharmonic poten-
tial of the form V (r) = D0

(
r
r0
− r0

r

)2 depending on the
spatial coordinate r. The variation of the above potential
according to coordinate r is given in Fig. 1. The two-
component spinors and the corresponding energy equa-
tion have been obtained within the framework of the LTA
which is a powerful algebraic treatment for solving the
second-order differential equation via conversion of it into
a more simpler form. The upper and lower component
spinors have been expressed in terms of the confluent hy-
pergeometric functions.

Fig. 1. Graphical representation of the pseudohar-
monic potential for D0 = 27 and r0 = 1 for different
values of r.
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