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Numerical Study for Fractional Euler–Lagrange Equations
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We investigate the fractional harmonic oscillator on a moving platform. We obtained the fractional Euler–
Lagrange equation from the derived fractional Lagrangian of the system which contains left Caputo fractional
derivative. We transform the obtained differential equation of motion into a corresponding integral one and then
we solve it numerically. Finally, we present many numerical simulations.
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1. Introduction

Fractional calculus owes its origin to an old question
about possibility of taking derivative to a non- integer or-
der. It was formulated nearly at the same time as a classi-
cal calculus. Several scientists studied this issue, among
them Euler, Abel, Fourier, Liouville, Riemann, Grun-
wald, Letnikov, and many others. Fractional calculus
was regarded for a long time only from a mathematical
point of view. Recently, the fractional calculus becomes
a very useful and powerful tool in many branches of sci-
ences and engineering [1–3]. Several definitions of non-
integer order operators have been introduced and used;
such as the Riemann–Liouville integral and differential
operators, the Caputo derivatives, the Hadamard inte-
gral, the Weyl integral, etc.

The fractional variational calculus was formulated
first by Riewe [4]. He got the appropriate fractional
Euler–Lagrange equations, linking conservative and non-
conservative cases. These fractional Euler–Lagrange
equations are then used to investigate many physical
problems [5–13].

Many systems in physics can be described by their La-
grangian equation, and from the Lagrangian we can ob-
tain differential equation containing left and right frac-
tional derivatives, these obtained equations are known as
the Euler–Lagrange equations. In many cases the exact
solution cannot be obtained for these equations and for
this reason the numerical approach is a natural alterna-
tive to the analytical approach [14–19], and references
within them.
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The rest of the paper is arranged as follows: in Sect. 2,
the studied problem (harmonic oscillator on a moving
platform) is discussed briefly, and some definitions of
fractional operators are presented. In Sect. 3, we pro-
posed the numerical solution of the obtained fractional
Euler–Lagrange equations. Finally, the concluding re-
marks are presented in Sect. 4.

2. Description of the model, and some basic
definitions

Let us study a mass-spring system with mass m and
spring constant k, included within a massless cart. This
cart is travelling horizontally with a constant velocity U .
The constant velocity U is provided by an external action
(i.e., see Fig. 1).

Fig. 1. Mass–spring system on a massless cart.

In this case the Lagrangian L = T − V has the follow-
ing form:

L =
1

2
mq̇2 − 1

2
k(q − Ut)2. (1)

The resulting classical Euler–Lagrange equation of mo-
tion is

mq̈ = −k(q − Ut) (2)
with boundary conditions
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q (a) = ξa, q (b) = ξb. (3)
If we substitute Q = q − Ut in Eq. (2), then we get

mQ̈ = −kQ (4)
with adequate boundary conditions

Q (a) = q (a)− Ua = ξa − Ua,

Q (b) = q (b)− Ub = ξb − Ub. (5)
Now, Eq. (1) can be fractionalized as

LF =
1

2
m(CaD

α

t q)
2 − 1

2
k(q − Ut)2. (6)

To obtain the fractional Euler–Lagrange equation from
Eq. (6) we use results presented in [20]:

∂LF

∂q
+C
t D

α
b

∂LF

∂CaD
α
t q

+ C
aD

β

t

∂LF

∂Ct D
β
b q

= 0. (7)

The obtained equation reads
−k(q − Ut) +mC

t D
α
b
C
aD

α

t q = 0. (8)
Setting Q = q − Ut and taking its fractional derivative
we have

C
t D

α
b
C
aD

α

t q =C
t Dα

b
C
aD

α

t Q+ UCt D
α
b
C
aD

α

t t. (9)
So, Eq. (8) reads

−kQ+mC
t D

α
b
C
aD

α

t Q = −mUCt Dα
b
C
aD

α

t t (10)
or

C
t D

α
b
C
aD

α

t Q− ωQ = fα(t), (11)
where fα(t) = −UCt Dα

b
C
aD

α

t t and ω = k
m . Equation (11)

is a non-homogeneous fractional differential equation and
we aim to solve it numerically in this work. For α = 1
Eq. (11) is reduced to Eq. (4).

In fractional calculus the zeros of the fractional oper-
ators are different than the ones in classical cases. This
important property generates extra term which is not
present in the local classical calculus. The extra term
which appears in Eq. (11) and denoted by fα is due to
the change of variables Q = q − Ut, namely the linear

Fig. 2. The behavior of the function fα for various pa-
rameters U , a, b and order α.

term in time has a non-zero contribution which clearly
shows the effect of nonlocality. In fact, the dimension
of fα is the same as of the other two terms appearing
in Eq. (11). This extra term appears only when alpha is
strictly between zero and one. For several values of alpha
we draw three graphs (see Fig. 2) of this pure nonlocal
effect in order to visualize better its behavior.

Below, we discussed the definitions of fractional inte-
grals and derivatives [1]. These definitions are used in
the following part of the paper.

The left and right Riemann–Liouville fractional inte-
gral operators are defined by:

aI
α
t f(t) =

1

Γ (α)

t∫
a

(t− τ)
α−1

f(τ)dτ, (12)

tI
α
b f(t) =

1

Γ (α)

b∫
t

(τ − t)α−1
f(τ)dτ, (13)

respectively.
The left Caputo fractional derivative (LCFD) reads
C
aD

α

t f(t) =

1

Γ (n− α)

t∫
a

(τ − t)n−α−1
Dnf(τ)dτ. (14)

The right Caputo fractional derivative (RCFD) reads
C
t D

α
b f(t) =

1

Γ (n− α)

b∫
t

(τ − t)n−α−1
(−D)nf(τ)dτ, (15)

where n− 1 < α ≤ n and Dn ≡ dn

dtn
.

3. Numerical solution

Here Eq. (11) is to be solved numerically, and to do
this: First, we transform Eq. (11) into an integral equa-
tion. We integrate Eq. (11) twice by using the RRLFI
(13) and the LRLFI (12), respectively. Finally, by using
results presented in [21, 22] we obtain the integral form
of Eq. (11)

Q (t)−ω
(
aI
α
t tI

α
bQ (t)−

(
t−a
b−a

)α
aI
α
t tI

α
bQ (t)|t=b

)
=(

t− a
b− a

)α
(Q (b)−Q (a)− aI

α
t tI

α
b fα (t)|t=b)

+aI
α
t tI

α
b fα (t) +Q (a) . (16)

Taking into account the form of the function fα(t) =
−UCt Dα

b
C
aD

α

t t we have

Q (t)−ω
(
aI
α
t tI

α
bQ (t)−

(
t−a
b−a

)α
aI
α
t tI

α
bQ (t)|t=b

)
=(

t− a
b− a

)α
(Q (b)−Q (a)− f (b)) + f (t) +Q (a) ,

(17)

where f(t) = U

(
−t+ a+

t− a
Γ (2− α)Γ (1 + α)

)
.
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Now, we introduce the following grid of nodes (with
the time step ∆t = (b− a)/N): a = t0 < t1 < . . . < ti <
. . . < tN = b, for i = 0, 1, . . . , N .

There exist many numerical methods to obtain an
approximation of integral operators of integer or non-
integer order [21–25]. On the basis of discretization of
fractional integrals (12) and (13) presented in our pa-
pers [21, 22, 25] we can write the numerical scheme for
the integral equation (17) as the system of N + 1 linear
equations

Qi − ω

 i∑
j=0

ui,j

N∑
k=j

vj,kQk

−
(
i

N

)α N∑
j=0

uN,j

N∑
k=j

vj,kQk

 =(
i

N

)α
(QN −Q0 − fN ) + fi +Q0 (18)

for i = 0, 1, . . . , N . On the basis of the numerical scheme
presented above we implemented the procedure in Maple
and carried out computational simulations for different
values of parameters m, k, U and the order α . We ap-
plied the LU decomposition method in order to numeri-
cally solve the system (18). In all examples we assumed:
a = 0, b = 1. The time domain [0, 1] has been divided
into N = 500 subintervals. Figure 3 showed a compari-
son of the solution of Eq. (4) with the solution of Eq. (11)
for the order of α = 1.

Presented results demonstrate that the approximate
solution has a good agreement with the exact solution.

In Fig. 4 we presented results of the numerical solutions
of Eqs. (8) and (11) for various values of parameters m,
k, U and the order α. The values of parameters used in
the solution of considered equations are given in the plot
legends.

Fig. 3. Comparison of the analytical solution of Eq. (4)
and the numerical solution of Eq. (11) for α = 1 and
boundary conditions ξa = 0, ξb = 2.

Fig. 4. Numerical solutions of Eqs. (8) (dash line) and
(11) (solid line) for various values of parametersm, k, U
and the order α and boundary conditions ξa = 0, ξb = 2.

Fig. 5. Numerical solutions of Eq. (11) for various val-
ues of order α ∈ {0.97; 0.98; 0.99; 1} and boundary con-
ditions: ξa = 1, ξb = 2 (left side) and ξa = 2, ξb = 1
(right side).

Fig. 6. Numerical solutions of Eq. (11) for various val-
ues of parameters m, k ∈ {0.5; 1; 1.5; 2} and boundary
conditions ξa = 0, ξb = 1.

In Fig. 5 numerical simulations for the fixed values
m = 0.125, k = 4, U = 0.25 and different values of α
are presented. In Fig. 6 we depicted the results for α =
0.9, α = 1, U = 0.25 and various values of parameters
m and k.
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4. Conclusions

In this paper the fractional harmonic oscillator
on a moving platform was investigated. The non-
homogeneous fractional Euler–Lagrange equation involv-
ing the composition of the left and right Caputo deriva-
tives of the order α was transformed into the integral
form. Next, the numerical scheme for the obtained inte-
gral equation was presented. Several examples of approx-
imate solutions of considered equation for different values
of parameters m, k, U , and α was shown. The exact so-
lution of this type of equation (except for α = 1) is not
yet known. Our proposed numerical method of solution
for α = 1 is consistent with the exact solution. One can
note that by fixing the parameters and by changing α we
get different results. On the other hand, for α constant
and varying the mass m and spring stiffness k we get
different behaviors of the solution. The presented results
demonstrate that the proposed approach is more suitable
to characterize the complex dynamics in the considered
system.
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