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In this work we study a fifth-order Korteweg—de Vries equation for shallow water with surface tension derived by
Dullin et al. The fifth-order Korteweg—de Vries equation, derived by using the nonlinear/non-local transformations
introduced by Kodama, and the Camassa—Holm equation with linear dispersion, have very different behaviors
despite being asymptotically equivalent. We use the simplified form of the Hirota direct method to derive multiple

soliton solutions for this equation.
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1. Introduction

In the context of nonlinear fifth-order KdV type equa-
tions, studies are flourishing because these equations
are able to describe the real features in a variety of
scientific applications and engineering areas and would
have much practical/physical meaning [1-17]. Fifth-
order KdV (KdV5) type equations take the form

Ut = Ugzzzx + f(xv tv Ugy Uz, umzz)v (1)
arising naturally in modeling many different wave phe-
nomena such as gravity-capillary waves, the propagation
of shallow water waves over a flat surface and magneto-
sound propagation in plasmas [5]. The fifth-order KdV
type equations appear in the literature in three main fam-
ilies, given as:

1. The first family reads [18]:

U + aully + busy — rus, = 0, (2)
where a,b,r are constants. This equation is called the
Kawahara equation which models the dynamics of long
waves in a viscous fluid.

2. The second family of nonlinear fifth-order KdV
(fKdV) equations in its standard form reads [18-30]:

ur + auzum + ﬁumurz + Yuuszy, + usy = 0, (3)
where «, 5, and v are arbitrary nonzero and real param-
eters, and v = u(z,t) is a sufficiently smooth function.
The fifth-order KdV Egs. (3) involve the linear disper-
sive term us, in addition to three nonlinear terms. Be-
cause the parameters «, 8, and ~ are arbitrary and take
different values, this will drastically change the charac-
teristics of the fKdV Eq. (3). A variety of the fKdV
equations can be developed by changing the real val-
ues of the parameters «, 8, and ~ [18]. The most well-
known fifth-order KdV equations which were examined
thoroughly are the Sawada—Kotera (SK) equation, the
Caudrey—Dodd—Gibbon equation, the Lax equation, the
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Kaup—Kuperschmidt (KP) equation, and the Ito equa-
tion. These forms are:
(i) the Sawada—Kotera (SK) equation [18] is given by

g + 5uuy + Buglyy + Duusgy + use = 0; (4)
(ii) the Caudrey-Dodd-Gibbon equation (CDG) [18] is
given by

wy 4 180Uty + 30Uptse 4+ 30Ulyre + Uppzze = 0; (5)
(iii) the Lax equation [18] reads

up + 30uuy + 20Uy tyy + 10uus, + usy = 0; (6)
(iv) the Kaup-Kuperschmidt (KK) equation [18] reads

up + 200Uy 4 25Up gy + 10uus, + usy = 0 (7)
and is characterized by

B = g%a = %ﬁ (8)
(v) the Tto equation [18]

g + 20Uy + 6ugty, + 3uusgy + usg = 0. (9)

It was found that the SK, CDG, Lax, and KK equations
belong to the completely integrable hierarchy of higher-
order KdV equations. These four equations have infinite
sets of conservation laws, and therefore these equations
have N-soliton solutions. However, the Ito equation is
not completely integrable but has a limited number of
special conservation laws.

3. The third family reads [19-30]:

Uttt — Utzazzr — a(utum)mx - B(uwuxt)w = 07 (10)
or equivalently
Uttt — Utgzzer — a(utuz)zz - ﬁ(uzuzx)t =0. (]-1)

The third family is integrable only if o = .

However, Dullin et al. [1, 2] used the Kodama trans-
formation given in [3, 4] to transform the Camassa—Holm
(CH) equation to a fifth-order KdV equation, referred to
by KdV5, given by

Up + Cy + 3uty + 502 (Ulppy + 2Uplsy)
5 a?

1

which works as a model for the shallow water waves with
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surface tension, u(z,t) is the fluid velocity, o® and 3 are
the length scales, and c is the linear wave speed [1-6].
Unlike the second family of fifth-order KdV equations,
the KdV5 includes two linear dispersive terms g, and
Upzazs. FOr a = 0, the KAV5 (12) equation recovers the
standard KdV equation.

Through the Kodama transformation [1-6]:

a? a?
U=u+ f(ﬁqf + 2ﬁuwaflu) +26%0% U,  (13)
the CH equation [9]
mg + cmg + Umyg + 2mU, + BUzzs =0 (14)

can be transformed to the KdV5 Eq. (12), where m =
U? —a2U is a momentum variable, and U (x, t) represents
the height of the water free surface above a flat bottom.
The CH equation can be derived as an asymptotic model
for long gravity waves at the surface of shallow water.
The CH equation retains non dominant terms with re-
spect to the dominant balance between nonlinearity and
dispersion modeled by the KdV equation. Besides being
a model equation for water waves, the CH equation has
its integrable bi-Hamiltonian structure, and has peaked
solitary wave solutions [9].

In Refs. [1, 2], it was shown that the asymptotic equiv-
alence of the CH equation to the KdV5 equation breaks
down in the limit 8 — 0, because the transformation
as well as the resulting equation contain terms divided
by 8, and the CH equation provides peak on solutions
whereas the KdV5 equation gives soliton solutions as will
be discussed later. Moreover, the CH equation does not
contain the term g ... that makes it easier to integrate
numerically if compared with the KdV5 Eq. (12).

In Refs. [1, 2], it was shown that the CH equation
is asymptotically equivalent to KdV5 equation by us-
ing the nonlinear/ nonlocal transformations introduced
in the Kodama transformation [3, 4]. Moreover, Dullin
et al. [1, 2] classified the travelling wave solutions of the
KdV equation as a function of the Bond number by using
phase plane analysis. In Ref. [5], the authors examined
the binary Bell polynomials, Lax pair and the infinite
conservation laws for the KdV5 equation.

It is interesting to note that the extended KdV equa-
tion, as first called by Marchant and Smyth [31], of sec-
ond order in small parameters, was subjected to useful
studies in [32-34] and some of the references therein. In
Ref. [31], it is shown that the extended KdV equation
can be transformed (to its order of approximation) to a
higher-order member of the KdV hierarchy of integrable
equations. However, in Ref. [32], the equations obtained
in the higher orders of approximation, in general, also
differ from the KdV equation with higher order correc-
tions. Also, including surface tension in general does not
alter the structure of the leading order and higher or-
der equations [32]. Moreover, in [33], the derivation of
a KdV type equation, second order in small parameters,
containing terms from the bottom function was exam-
ined. The energy invariant for shallow-water waves and
the Korteweg—de Vries equation were examined in detail

in [34]. Generally, KdV2 equation (second order with
respect to small parameters) are examined thoroughly
in [31-34] in addition to [1, 2].

Studies of finding soliton solutions of the nonlinear
equations attracted huge number of works in a variety
of fields in [19-30] and some of the references therein.
Towards this goal, a variety of powerful methods to con-
struct multiple soliton solutions has been established in
the fields of mathematical physics and engineering. Ex-
amples of the methods that have been used are the
Hirota bilinear method [7-30], the simplified Hirota
method [8], the Bécklund transformation method, the
Darboux transformation, Pfaffian technique, the inverse
scattering method, the Painlevé analysis, the generalized
symmetry method, the subsidiary ordinary differential
equation method, the coupled amplitude-phase formula-
tion, the sine-cosine method, the sech-tanh method, the
mapping and the deformation approach, and many other
methods. The Hirota bilinear method [7], and the simpli-
fied Hirota method developed in [8] are rather heuristic
and significant to handle equations with constant coeffi-
cients. These two methods possess powerful features that
make it practical for the determination of single soliton
and multiple soliton solutions for a wide class of nonlin-
ear evolution equations. The simplified Hirota method [8]
does not depend on the construction of the bilinear forms,
instead it assumes that the multi-soliton solutions can be
expressed as polynomials of exponential functions. The
computer symbolic systems such as Maple and Mathe-
matica allow us to perform complicated and tedious cal-
culations.

In this work we plan to use the simplified Hirota
method to formally derive multiple soliton solutions for
the KdV5 Eq. (12). The multiple singular soliton solu-
tions will be examined as well.

2. The KdV5 equation

In this section we will study the KdV5 equation
g + Uy + 3ty + 507 (Uppe + 2Uptipy ) (15)

15 o2
+?%u2uz + ﬂ(a2uxa::r:vz + umrz) = 07 ﬁ 7é 0.

To determine the dispersion relation for (15) we substi-
tute

u(z,t) = %, 0; = kyx — cit, (16)
into the linear terms of (15) and solve the resulting equa-
tion for the dispersion relation ¢; to find that

ci = cki + B(k? 4+ kD), i =1,2,3. (17)
Consequently, the phase variables read

0; = kix — [cki + B(k} + kD)| t, i =1,2,3.  (18)
To determine the single soliton solution, we use the trans-
formation

u(z,t) = R(ln f(x))za, (19)
where the auxiliary function f(z,t), for the single soliton
solution is given by
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F(@,t) = 1+ e =1 4 b1z (chtBUi+a D)t (90)
Substituting (20) into (15) and solving for R we find

R =4g6. (21)
This in turn gives the single soliton solution as
4Bk? eklx—[ck1+/3(k§+a2k§)]t

u(z,t) = (22)

{1 + eklmf[clirﬂ(k‘;’Jra?k?)]t}Q.
Notice that using the auxiliary function as
flat) =1— e =1 — ehe[ehtAtita® D]t (93
gives the single singular soliton solution
48k? okrz—[cki+B (k] +akD)]t

u(z,t) = — (24)

{1 _ eklx—[ck1+ﬂ(kf+a2k§)]t}2’

which blows up when the denominator becomes zero for
specific values of z,t,a2, 3 and k;. For the two soliton
solutions we set the auxiliary function as

flx,t) =1+ e + e 4 appefrth2, (25)
where the phase variables 0;,7 = 1,2,3 are given earlier
in (18), and a2 is the phase shift that will be determined.
Substituting (25) and (19) into (15) and solving for the
phase shift ai2, we find

(k1 — ko)?
= —= 26
a2 (k’l T k2)2’ ( )
which can be generalized to
(ki — k;)? .
=5, 1<i<j <3 27
W Ry T 0

Substituting (25),(26) into (19) gives the two soliton so-
lutions.
However, using the auxiliary functions as
f(.]?,t) =1— % — ef2 + a12601 + 02, (28)
gives the two singular soliton solutions.
For the three soliton solutions, we set the auxiliary
function by

fl,t)y=1+ e 4 e 4 % 4 qipe? 02 4 gyl tls

+ag3 205 4 byog et T2 H0s, (29)
Proceeding as before, we find
bi123 = a12a23013- (30)

The three soliton solutions are obtained by substituting

(29) into (19). This shows that the KdV5 equation (15)

gives N-soliton solutions for finite N, where N > 1.
Moreover, using the auxiliary function in the form

fla,t)=1- et — o2 — ¥ 4 gief1 02 4 gqgefitls

02403 01402403 (31)
b

+asze
gives three singular soliton solutions.

— 12013023€

3. Discussion

In this work we studied the KdV5 equation which
works as a model for the shallow water waves with surface
tension. The KdV5 equation and the CH equation with
linear dispersion, have very different behaviors despite

being asymptotically equivalent. We should that the
KdV5 equation gives multiple soliton solutions, whereas
the Camassa—Holm equation provides peak on solutions.
We used the simplified Hirota method to formally derive
the multiple soliton solutions for the KdV5 equation.
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