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The work describes the properties of the high-pressure superconducting state in phosphor: p ∈
{20, 30, 40, 70} GPa. The calculations were performed in the framework of the Eliashberg formalism, which is
the natural generalization of the BCS theory. The exceptional attention was paid to the accurate presentation of
the used analysis scheme. With respect to the superconducting state in phosphor it was shown that the observed
not-high values of the critical temperature ([TC]

max
p=30 GPa = 8.45 K) result not only from the low values of the

electron–phonon coupling constant, but also from the very strong depairing Coulomb interactions. Additionally
the inconsiderable strong-coupling and retardation effects force the dimensionless ratios R∆, RC, and RH — related
to the critical temperature, the order parameter, the specific heat, and the thermodynamic critical field — to take
the values close to the BCS predictions.
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1. Hamiltonian and fundamental equations
of BCS model and Eliashberg formalism

The first microscopic theory of the superconducting
state was formulated in 1957 by Bardeen, Cooper and
Schrieffer (the so-called “BCS model”) [1, 2]. In the
framework of the method of the second quantization the
BCS Hamiltonian can be written with the following for-
mula [3, 4]:

H =
∑
kσ

εkc
†
kσckσ − V

∑
kk′

′c†k↑c
†
−k↓c−k′↓ck′↑, (1)

where the function εk represents the electron band en-
ergy, V is the effective pairing potential, whose value
is determined by the matrix elements of the electron–
phonon interaction, the electron band energy and the
phonon energy. The symbols c†kσ and ckσ represent the
creation and annihilation operator of the electron state in
the momentum representation (k) for the spin σ ∈ {↑, ↓}.
It should be noted that the sum denoted by the sign ′
ought to be calculated only for those values of the mo-
menta, for which the condition −Ωmax < εk < Ωmax is
fulfilled, where Ωmax represents the Debye energy. In the
considered case the effective pairing potential is positive,
which allows the formation of the superconducting con-
densate. The fundamental equation of the BCS theory
for the order parameter (∆ ≡ V

∑
k

′〈c−k↓ck↑〉) is de-
rived directly from Hamiltonian (1) using the mean field
approximation to the interaction term. As a result the
following can be obtained:

1 = V
∑
k

′ 1

2
√
ε2
k + |∆(T )|2

tanh

√
ε2
k + |∆(T )|2

2kBT
, (2)
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where kB is the Boltzmann constant. Let us notice
that Eq. (2) cannot be solved analytically. However,
in the limit cases T → TC and T → 0 K the rela-
tively simple calculations allow us to obtain the formu-
lae for the critical temperature and the value of the or-
der parameter kBTC = 1.13Ωmax exp (−1/λ), ∆ (0) =
2Ωmax exp (−1/λ). The electron–phonon coupling con-
stant λ in the BCS model is given by λ ≡ ρ (0)V (the
quantity ρ (0) represents the electron density of states on
the Fermi surface). The BCS theory predicts the exis-
tence of the universal thermodynamic ratios, which are
defined below:

R∆ ≡ 2∆ (0)/(kBTC) = 3.53, (3)

RC ≡
CS (TC)− CN (TC)

CN (TC)
= 1.43, (4)

and

RH ≡
TCC

N (TC)

H2
C (0)

= 0.168. (5)

The symbols appearing in the formulae (4) and (5) denote
respectively: CS — the specific heat of the superconduct-
ing state, CN — the specific heat of the normal state,
and HC — the thermodynamic critical field. It should
be noted that the predictions of the BCS theory quanti-
tatively agree with the experimental data only within a
range of the weak electron–phonon coupling (λ ≤ 0.3).

The Eliashberg formalism is the natural generalization
of the BCS model (explicitly complies with the electron–
phonon interaction). The starting point of the theory is
the Hamiltonian, which models the linear coupling be-
tween the electron and the phonon sub-system [5, 6]:

H =
∑
kσ

εkc
†
kσckσ +

∑
q

ωqb
†
qbq

+
∑
kσ

gk,k+qc
†
k+qσckσ

(
b†−q + bq

)
. (6)
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The symbol ωq represents the phonon energy, gk,k+q

are the matrix elements of the electron–phonon inter-
action. The operator b†q (bq) creates (annihilates) the
phonon state with the momentum q. Based on Hamilto-
nian (6) and using the formalism of the thermodynamic
Green functions of the Matsubara type it is possible to
derive the Eliashberg equations on the imaginary axis
( i ≡

√
−1) [7, 8]:

∆nZn = πkBT

×
M∑

m=−M

[K (iωn − iωm)− µ? (ωm)]√
ω2
m + ∆2

m

∆m, (7)

and

Zn = 1 + πkBT

M∑
m=−M

K (iωn − iωm)√
ω2
m + ∆2

m

ωm
ωn

Zm. (8)

The quantity ∆n ≡ ∆ (iωn) denotes the order param-
eter, while Zn ≡ Z (iωn) is the wave function renor-
malization factor. The symbol ωn is the fermion Mat-
subara frequency ωn ≡ πkBT (2n− 1). The values of
the pairing kernel should be calculated from the formula
K (z) ≡ 2

∫ Ωmax

0
dΩ Ω

Ω2−z2α
2F (Ω). The symbol α2F (Ω)

represents the so-called Eliashberg function, which

quantitatively models the electron–phonon interaction.
The function α2F (Ω) can be determined either by using
data from tunneling experiments or by referring to re-
sults of calculations from the first principles. In the clas-
sical Eliashberg formalism the depairing electron correla-
tions were included in the parametric manner µ? (ωm) ≡
µ?θ (ωC − |ωm|), whereas µ? is called the Coulomb pseu-
dopotential. The symbol θ is the Heaviside function, and
ωC denotes the cut-off frequency, whose value is usually
several times higher than the value of Ωmax. The Eliash-
berg equations can be also derived in the case, in which
the fitting parameter µ? is not present (mathematically
this is a very tough issue). For this purpose, both the ex-
tended Hubbard Hamiltonian [9] and the method of the
analysis discussed in the paper [10] should be used. The
Eliashberg equations on the imaginary axis allow us to
precisely calculate the critical temperature and the free
energy difference between the superconducting and the
normal state. They cannot, however, be used to deter-
mine the exact physical values of the order parameter and
the effective mass of the electron. For this purpose, the
Eliashberg equations should be an analytic continuation
from Matsubara to real frequency [11]:

φ (ω + iδ) = πkBT

M∑
m=−M

[K (ω − iωm)− µ? (ωm)]
φm√

ω2
mZ

2
m + φ2

m

(9)

+iπ

∫ +∞

0

dω
′
α2F

(
ω

′
){[

fBE

(
ω

′
)

+ fFD

(
ω

′
− ω

)] φ
(
ω − ω′

+ iδ
)

√
(ω − ω′)

2
Z2 (ω − ω′ + iδ)− φ2 (ω − ω′ + iδ)

}

+iπ

∫ +∞

0

dω
′
α2F

(
ω

′
){[

fBE

(
ω

′
)

+ fFD

(
ω

′
+ ω

)] φ
(
ω + ω

′
+ iδ

)
√

(ω + ω′)
2
Z2 (ω + ω′ + iδ)− φ2 (ω + ω′ + iδ)

}
,

Z (ω + iδ) = 1 +
i

ω
πkBT

M∑
m=−M

K (ω − iωm)
ωmZm√

ω2
mZ

2
m + φ2

m

(10)

+
iπ

ω

∫ +∞

0

dω
′
α2F

(
ω

′
){[

fBE

(
ω

′
)

+ fFD

(
ω

′
− ω

)] (
ω − ω′

)
Z
(
ω − ω′

+ iδ
)

√
(ω − ω′)

2
Z2 (ω − ω′ + iδ)− φ2 (ω − ω′ + iδ)

}

+
iπ

ω

∫ +∞

0

dω
′
α2F

(
ω

′
){[

fBE

(
ω

′
)

+ fFD

(
ω

′
+ ω

)] (
ω + ω

′
)
Z
(
ω + ω

′
+ iδ

)
√

(ω + ω′)
2
Z2 (ω + ω′ + iδ)− φ2 (ω + ω′ + iδ)

}
,

where the symbols fBE (ω) and fFD (ω) represent respec-
tively the Bose–Einstein function and the Fermi–Dirac
function. Note that the order parameter is defined as
follows: ∆ (ω) ≡ φ (ω) /Z (ω). In the remaining part of
the work, we have described the way of using the Eliash-
berg formalism to determine the characteristics of the
superconducting state induced by the electron–phonon
interaction. All relevant issues have been discussed on
the example of the superconducting condensate in phos-
phor, which was subjected to the influence of the high
pressure.

2. Superconducting phase in phosphor:
the state of knowledge

Five structural phase transitions can be observed in
phosphor in the range of the pressure from normal to
262 GPa. In the normal conditions the black phosphor
has the structure Cmca, which is stable up to the value
of the pressure at 5 GPa [12, 13]. The existence of the
structure R3m proven above, vanishes at the pressure
of 11.1 GPa, going into the metallic phase (simple cu-
bic structure, sc) [14]. In the range from 103 GPa to



Characteristics of the Eliashberg Formalism. . . 651

137 GPa the structure Cmmm is stable [15]. Further, up
to the pressure at 262 GPa, a simple hexagonal struc-
ture (sh) has been observed, whereas, for the pressure at
p > 262 GPa, the stability of the body-centered cubic
structure (bcc) has been noticed [15, 16]. The super-
conducting state in phosphor was observed for the first
time about fifty years ago [17, 18]. It should be noted,
however, that as of today the exact dependence of the
critical temperature on the pressure is not fully known
because the changes of the values of TC are strongly cor-
related with the path taken on the p-T diagram [19, 20].
The results from 1985 suggest that the value of the crit-
ical temperature is equal to about 6 K (the structure sc)
and weakly depends on the pressure [20]. On the other
hand, the experimental data included in the work [21]
indicate the existence of two characteristic peaks in the
course of the function TC (p), while the highest value of
the critical temperature is about 10 K (p = 23 GPa).
The results from 2002 are quite different and suggest the
existence of the single maximum of the critical tempera-
ture (TC = 9.5 K) located in the vicinity of the pressure
at 32 GPa, which is presented in Fig. 1 [22]. Referring
to the theoretical predictions, it should be noted that in
general they are obtained by the use of the significant
approximations. For example, in the paper [23] there is
the evidence of the maximum TC located near the second
experimental maximum of the critical temperature indi-
cated in the publication [21]. However, this theoretical
work completely left out the effect of the pressure on the
phonon spectrum. A similar approach in the work [24]
caused on incorrect definition of the function TC (p). In
2010, Nagara et al. suggest a very weak dependence of
the critical temperature on the pressure [25] — which is in
agreement with the experimental data presented in [20].
However, this is in a sharp contrast with the experimental
results in the paper [22]. At this point, let us mention the
doctoral thesis of Nixon [26], which expects the growth of
the critical temperature (TC ∈ 〈8.5, 11〉 K) together with
the growing pressure (p ∈ 〈10, 35〉 GPa). However, the
determined values of the Debye temperature are based
only on the bulk modulus.

3. Thermodynamics of high-pressure
superconducting state in phosphor:

the Eliashberg formalism

When analyzing the properties of the superconducting
state in phosphor, we have taken into account the val-
ues of the pressure equal to: 20 GPa, 30 GPa, 40 GPa,
and 70 GPa respectively, while the Eliashberg functions
were determined in [27]. It is worth noting that the re-
quired calculations for the electron band structure, the
phonon spectrum, and the electron - phonon interaction
have been conducted in the full ab initio scheme. Un-
fortunately, the depairing electron correlations have not
been estimated in the same way. For that reason, the val-
ues of the Coulomb pseudopotential have been chosen on
the basis of the relatively new experimental data related

to the critical temperature [22] (see Table I). The Eliash-
berg equations on the imaginary axis have been solved
for 1100 Matsubara frequencies (M = 1100). We have
taken the advantage of the numerical methods described
and used in the works: [28–33]. The functions ∆n and Zn
are stable for the temperature higher than T0 = 1.5 K.
It is assumed that the cut-off energy is equal to 5Ωmax,
where the exact values of the Debye energy are collected
in Table I.

TABLE I

The selected parameters determining the properties of
the high-pressure superconducting state in phosphor [22].

Quantity Unit 20 GPa 30 GPa 40 GPa 70 GPa
TC K 6.39 8.45 8.05 5.4

Ωmax meV 59.4 62.3 64.8 74
µ? 0.37 0.29 0.27 0.28
λ 0.795 0.771 0.739 0.676
ωln meV 418.3 444.1 456.5 469.4

Fig. 1. The influence of the pressure on the value of
the critical temperature in phosphor [22].

In the first step we have calculated the physical val-
ues of the Coulomb pseudopotential corresponding to the
given pressure. For this purpose, the following condition
has been used: [∆n=1 (µ?)]T=TC

= 0, where ∆n=1 repre-
sents the maximum value of the order parameter. Fig-
ure 2 presents the dependence of the order parameter on
the Coulomb pseudopotential at the critical temperature.
The obtained results prove that µ? takes very high values
(see Table I) in relation to the value generally taken into
account in the calculations (µ? ∼ 0.1). It should be noted
that this situation is often observed in the analysis of the
high-pressure superconducting state. For example, for
lithium the physical value of the Coulomb pseudopoten-
tial is equal to: [µ?]p=29.7 GPa = 0.36 [34]. The anoma-
lously high values of the Coulomb pseudopotential can
be explained when analyzing the influence of the retarda-
tion effects on the value of the non-renormalized Coulomb
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Fig. 2. The maximum values of the order parameter as
a function of the Coulomb pseudopotential. The exact
values of the critical temperature have been collected in
Table I. High values of µ? mean that the critical temper-
ature cannot be estimated on the basis of the McMillan
or Allen–Dynes expression [37, 38] (see the inset).

pseudopotential (µ ≡ Uρ (0)) in the second order of µ,
where U ≡

∫ ∫
d3r1d

3r2|Φi (r1) |2VC (r1 − r2) |Φi (r2) |2,
Φi (r) is the Wannier function. In the considered case the
retardation effects lead to the reduction µ→ µ?, but not
as large [35] as it was predicted by the classical Morel and
Anderson theory, which was limited to the linear order
with respect to µ [36].

Fig. 3. The free energy difference between the super-
conducting and the normal state as a function of the
temperature (the lower partss). The thermodynamic
critical field — the upper parts.

Fig. 4. The specific heat of the superconducting state
and the normal state as a function of the temperature.
In the Eliashberg formalism the free energy differ-

ence between the superconducting and the normal state
should be calculated from the formula [39]:

∆F = −2πkBTρ (0)

M∑
n=1

[

√
ω2
n + (∆n)

2 − |ωn|]

×[Z(S)
n − Z(N)

n

|ωn|√
ω2
n + (∆n)

2
]. (11)

In the next step, the thermodynamic critical field
(HC =

√
−8π∆F ) has been calculated, as well as the

difference in the specific heat of the superconducting
and the normal state: ∆C = CS − CN = −T d2∆F

dT 2 ,
where CN = γT . The Sommerfeld parameter is equal
to γ ≡ 2

3π
2k2

Bρ(0) (1 + λ). The electron–phonon cou-
pling constant should be calculated from the formula
λ ≡ 2

∫ Ωmax

0
dΩ α2F (Ω)

Ω (Table I). The lower parts in
Fig. 3 show the full form of the function ∆F (T ). It
can be very clearly seen that the free energy difference
takes negative values in the whole range of the tem-
perature, up to TC, which is the evidence of the ther-
modynamic stability of the superconducting phase. It
should be noted that in the case of phosphor the low-
est value of the free energy difference has been obtained
for 30 GPa (∆F (T0) /ρ (0) = −1.4 meV2), while the
highest has been obtained for 70 GPa (∆F (T0) /ρ (0) =
−0.47 meV2). From the physical side the obtained result
is related to the values of the electron–phonon coupling
constant and the Coulomb pseudopotential. The course
of the function ∆F (T ) directly determines the thermo-
dynamic critical field and the specific heat. The results
are presented in the upper parts of Fig. 3 and Fig. 4,
respectively.
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The physical value of the order parameter should
be calculated by using the equation: ∆ (T ) =
Re [∆ (ω = ∆ (T ) , T )], while the form of the order pa-
rameter on the real axis has been determined by solv-
ing the Eliashberg equations in the mixed representation.
The exemplary courses have been collected in Fig. 5.
When analyzing the behavior of the order parameter on
the real axis, the attention should be paid to the fact that
for low frequencies the non-zero values are taken only by
the real part of the function ∆ (ω). From the physical
point of view, this proves the existence of the infinitely
long-lived Cooper pairs. At the higher frequencies the
imaginary part of the order parameter is also non-zero,
which, of course, determines the finite lifetime of the elec-
tron pairs. At this point it is worth mentioning that the
particularly large changes in the values of the order pa-
rameter are very closely correlated with the distinctive
group of peaks occurring in the course of the Eliashberg
function.

Fig. 5. The order parameter on the real axis for the
selected values of the temperature (p = 30 GPa). Ad-
ditionally, the shape of the rescaled Eliashberg function
(6α2F (ω)) was plotted.

Then, the electron effective mass (m?
e) has been calcu-

lated from the formula m?
e = Re ((Z (T ))ω=0)me, where

the symbol me denotes the electron band mass. The val-
ues of the order parameter and the electron effective mass
have been plotted in Fig. 6.

The dimensionless ratios R∆, RC, and RH have been
calculated in the last step. The obtained results prove
that the values do not significantly differ from the values
predicted by the BCS theory. The biggest derogations
of several percent have been found for the pressure at
30 GPa. Let us note that the result above is related
to the insignificant strong-coupling and retardation ef-
fects, which are characterized by the ratio r ≡ kBTC/ωln.
Within the model of BCS theory, the Eliashberg equa-
tions predict that r → 0. For p = 30 GPa, it was obtained

Fig. 6. The dependence of the order parameter and the
electron effective mass on the temperature.

r = 0.02. The quantity ωln is called the logarithmic fre-
quency, and should be determined with the help of the
formula ωln ≡ exp

(
2
λ

∫ Ωmax

0
dΩ α2F (Ω)

Ω ln (Ω)
)
. The val-

ues of the logarithmic frequency have been collected in
Table I.

4. Summary

The presented work discusses the Eliashberg formal-
ism, which is used for the quantitative description of
the thermodynamic properties of the superconducting
condensate induced by the electron–phonon interaction.
The use of the Eliashberg approach is significantly bet-
ter than the BCS since λ > 0.3. The detailed considera-
tions have been illustrated on the example of the super-
conducting state in phosphor under the influence of the
high pressure. With respect to the considered system
it has been found that the critical temperature is rela-
tively low, which is connected with not very high values
of the electron–phonon coupling constant and the signifi-
cant depairing Coulomb interactions. It should be noted
that there is no exact connection between the increase
of the pressure and the value of the critical temperature
in the considered case. TC takes the lowest value for the
pressure at p = 70 GPa and the highest for the pressure
at p = 30 GPa. Additionally, it has been shown that
the strong-coupling and retardation effects do not cause
the significant derogations of the values of the dimension-
less ratios R∆, RC, and RH from the values predicted by
the BCS theory. Only a dependence of the critical tem-
perature on the pressure is experimentally known. The
Eliashberg formalism can closely consider the value of the
critical temperature and on its basis obtain accurate val-
ues of the remaining thermodynamic parameters of the
superconducting state.

Let us point our attention toward the fact that the
Eliashberg formalism discussed in the presented work is
also used for the description of the untypically high crit-
ical temperature state induced by the electron–phonon.
In particular, it can be used for the quantitative analysis
of the superconducting state in H2S and H3S [40–43].
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