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In this work we numerically modelled a periodic magnetic flux pattern which qualitatively reproduces the
so-called sand avalanches scenario in type-II superconductors. To model these sand-pile patterns we consider a
perturbation on the critical current which, as a first approximation, follows a periodic function which depends on
the position.
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1. Introduction

The magneto-optical technique has revealed a stochas-
tic distribution of the magnetic flux in type-II super-
conducting films, therein, a rough penetration front is
formed when a stationary state is reached. The rough-
ness depends on the temperature because at the thresh-
old temperature Tsp (subscript “sp” means a sand pile
scenario) the landscape looks like sand avalanches dis-
tributed randomly throughout the border sample [1, 2];
on the other hand, at temperatures Tca < Tsp (subscript
“ca” indicates a catastrophic avalanche regime) the sce-
nario is a consequence of dendrites nucleation [3].

According to our magneto-optical images (see Fig. 1)
obtained at the surface of the NbTi at 50%, a material
widely used in technology, the magnetic profiles have a
“rocky-mountain-like” slope due to stochastic jumps of
the flux bundles which form a rough flux front [1]. The
influence of such non-uniform flux front relief map may be
significant on the upper shielding limit of the full critical
state stability.

The characterization of the magnetic instabilities at
these different temperatures regions is useful for tech-
nological applications and fundamental studies. Specifi-
cally, changes in perturbations such as the applied mag-
netic field or the local temperature are of great interest,
for this purpose, the stability condition of the critical
state and the magnetic induction behaviour at each re-
gion, is required.

Our goal is to model the magnetic induction at regions
where the sand-pile scenario occurs, so in this work we
theoretically model a periodic flux pattern which quali-
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Fig. 1. Magneto-optical images of flux penetration in
external magnetic field Ha = 400 G in a NbTi disc with
diameter 12 mm; T = 6 K.

tatively reproduces the scenario of sand avalanches [1, 2].
This kind of flux pattern is important as a trigger, first,
for large catastrophic thermomagnetic avalanches and,
second, for the scenario of dendrites flux. To model flux
patterns as the so-called sand-pile type we consider a
perturbation on the critical current which, as first ap-
proximation, is a periodic function depending on the po-
sition [4]. In the next section, we show the modelling of
flux patterns, coming up next we present graphics of flux
distribution for an infinite plate and we finish with our
conclusions.

2. Modelling rough flux fronts with a perturbed
critical current density

Let us consider a semi-infinite superconducting plate
having its surface on the yz-plane and being under an ex-
ternal magnetic field Ha = Haẑ. For this geometry, the
magnetic field H, the magnetic induction B, the current
density j and the electric field E, are independent of the
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variable z. This study starts at the scenario where there
is a sand-pile landscape which originates deviations of the
current density (see parts (A) and (B) of Fig. 2). Also,
we assume the existence of nucleation sites of avalanches
periodically distributed at the borders, and that the flux
fronts have a periodic behaviour as it is shown schemat-
ically at part (C) of Fig. 2. These considerations lead to
the electromagnetic fields that depend on the variables
x and y, thus in our macroscopic approach the Ampere
and Faraday equations are written as

µ0jx = ∂yBz, µ0jy = −∂xBz,

∂tBz = −∂xEy + ∂yEx. (1)

Fig. 2. Sketch of the xy-plane of an infinite plate under
Ha = Haẑ. The current density j suffers a periodic
perturbation along the y-direction.

Since the effects of surface barrier are neglected, the
boundary condition Bz(0, y) = Bz(dx, y) = µ0Ha is ful-
filled, and due to the imposed periodicity it is considered
that Bz(x, y) = Bz(x, y + dy). To solve the Maxwell
equations we include the superconducting character of
the system through the material law

ji = Jik
Ek

E
, (2)

where Jik = Jiδik (i, k = x, y) are the elements of a di-
agonal tensor. Once the critical state is established, the
tensor components are Jxx = jcx and Jyy = jcy, so we
obtain from material law (2) the relations Ex = Ejx/jcx
and Ey = Ejy/jcy. The magnitude of the electric field is
modelled with a vertical law E = H(j−jc)ρ(j−jc), where
the resistivity ρ plays the role of an auxiliary parameter,
and H(j − jc) is the Heaviside function. Additionally,
with E ·E = E2 it was found that the magnitude of the
critical current is

1

j2
c

=
cos2 φ

j2
cx

+
sin2 φ

j2
cy

, (3)

where φ is the angle of the critical current density with

respect to the x-axis. Every point of the ellipse describes
a particular critical state; this critical ellipse is the heart
of the elliptic critical state models [5]. The ellipse path is
the restriction which provides us with certainty of being
in a critical state. Geometrically speaking, the critical
state corresponds to the intersection of the ellipse with
the circumference described by the Euclidean distance
|j| = jc.

Our model consists in adding a perturbation to a ref-
erence value of the critical current density jcy, that is,
jcx = jKA

cx and jcy = jKA
cy + ∆jcy where jKA

cx and jKA
cy

obeys the generalized Kim–Anderson function

jKA
cx =

j0x
(1 +B/B∗

x)
nx
, jKA

cy =
j0y(

1 +B/B∗
y

)ny
. (4)

Here jcx(0) = j0x, jcy(0) = j0y, B∗
x, B∗

y , nx and ny
are fitting parameters. If the material is isotropic at the
plane xy, then jKA

cx = jKA
cy , thus the disturbance leads

to an apparent spatial anisotropy produced by the nu-
cleation of avalanches. Moreover, the bending of the j
trajectory gives rise to a dependence on the x-component.
It is assumed that ∆jcy is a periodic function given by
∆jcy = j0y(B/B∆y) cos (αy + β) where B∆y is a con-
stant, β is a phase, α = nπ/dy, n is an even integer and
dy is the spatial period. Finally, we establish that the set
of Eqs. (1)–(4) depict an unusual critical state since an
artificial anisotropy, associated to the avalanches nucle-
ation at the edges of the sample, has been considered.

3. Results and discussion

To numerically solve the quasi-stationary Maxwell
equations — together with the material law and the Kim–
Anderson relations — we use the method of lines [6] me-
diated by the critical ellipse. We considered a YBCO
sample of thickness dx = 3 × 10−4 m and penetration
field µ0Hp = 8.565×10−2 T. The external field is applied
perpendicular to the isotropic crystallographic plane of
the sample, therefore, the relation jKA

cx = jKA
cy is ful-

filled and the fitting parameters are nx = ny = 0.5,
B∗

x = B∗
y = 0.1 T and j0x = j0y. The spatial period

matches with the thickness dy = dx.
We emulated rough flux fronts as can be appreciated

in Figs. 3 and 4, considering that the system is at an
unusual critical state, created by a flux distribution which
has been deformed by magnetic induction jets emerging
from the border sample. We artificially created the rough
flux front imposing an anisotropy on the x–y plane.

In order to understand better the flux front behaviour,
we first focus on the case of a Bz(x, y) distribution with
one oscillation at one spatial period. Thus, in Fig. 5 we
show a gray color map of the magnetic induction corre-
sponding to the unperturbed case when the applied field
reaches the value Ha = (Hp/2)ẑ. For this case the right
scale denotes the values of Bz/µ0Hp and the horizontal
white line corresponds to the profile Bz = 0.1µ0Hp. We
superimposed over the gray map another two profiles at
the same level Bz = 0.1µ0Hp but for different values of
the perturbation amplitude B∆y = 0.5, 0.1µ0Hp to show
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Fig. 3. Color maps of Bz(x, y) for Ha = 0.5Hp, B∆y =
0.1µ0Hp, two spatial periods and ten oscillations.

how they are deviated from the unperturbed case. We
have considered a single one oscillation, α = 2π/dy, with
phase β = π, to make clear the perturbation effect on the
profiles. As is expected, the perturbed magnetic induc-
tion distribution exhibits a periodic behaviour but each
profile does not oscillate around the unperturbed one be-
cause the perturbation linearly depends on the magnetic
induction. Let us observe the perturbed profiles, when
∆jy is positive, the B penetration is promoted, other-
wise, such a penetration is inhibited. This behaviour is a
consequence of the elliptic model which couples the crit-
ical current densities jcx and jcy, where only the later
suffers small changes.

One can observe in Fig. 3 the Bz(x, y) distributions for
partial penetration states at an applied fieldHa = 0.5Hp,
a perturbation B∆y = 0.5µ0Hp and two spatial periods.
They bear some resemblance to a box pencil drawing, the
upper gray map is obtained with five oscillations and the
bottom one has ten oscillations. Figure 3 shows the effect
of the perturbation amplitude, with B∆y = 0.1µ0Hp a
deeper penetration of the flux profiles is achieved. Notice
that those figures are not spatially proportional, therefore
the profiles in Fig. 3 looks sharper than those of Fig. 4.

4. Conclusion

The emulation of flux pattern into the sand-pile sce-
nario was successful for an infinite superconducting plate
under an external magnetic field at the parallel geometry.
These rough profiles can be employed as initial magnetic
states to study the effect of thermomagnetic instability.

Indeed, modelling real materials behaviour through
more irregular flux patterns than a periodic one is nu-
merically challenging. However, periodic flux fronts as

Fig. 4. Color maps of Bz(x, y) for Ha = 0.5Hp, B∆y =
0.5µ0Hp and two spatial periods. The upper gray map
is obtained with five oscillations, the bottom gray map
has ten oscillations.

those presented in this paper can be useful to study cer-
tain phenomena at the so-called catastrophic magnetic
flux avalanches regime, where temperature plays an im-
portant role. Even so, flux fronts with certain irregu-
larities can be modelled at the infinite parallel geometry;
the only requirement is that they fulfil periodic boundary
conditions. In other words, each rough flux front should
exist in a unit cell to be reproduced infinitely along the
y-direction. It is possible to model a randomly irregular
flux-front profile by modulating the periodic perturbation
with a random amplitude, however, we cons ider that the
global behaviour of the thermomagnetic instabilities does
not require this kind of precursory profile.
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Fig. 5. The applied magnetic field is Ha = (Hp/2)ẑ
and the current density j is perturbed along the y-
direction as ∆jcy = j0y(B/B∆y) cos (αy + β). The gray
scale denotes the values of Bz/µ0Hp, the gray map cor-
responds to the unperturbed case and the white hori-
zontal line to the profile Bz = 0.1Bp; there are super-
imposed over the gray map two profiles with the same
value Bz = 0.1Bp and amplitudes B∆y = 0.5, 0.1µ0Hp

to exhibit how they deviate from the unperturbed case.
It is assumed that α = 2π/dy and β = π.
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