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We theoretically study the infrared reflectivity and transmissivity of a high-temperature layered supercon-
ductor slab. Both infrared spectra exhibit very narrow Fabry–Perot resonances associated with the quantization
of the wave vector of the TM electromagnetic modes. The resonances are observed in a pass band where the
refractive index of the layered superconductor is negative. The pass band of negative dispersion is above the
Josephson plasma frequency which appears in the expression for the effective permittivity component, correspond-
ing to the direction perpendicular to the layers. It was found that the Fabry–Perot resonances undergo a blue
shift as the slab thickness or the angle of incidence are increased. Moreover, the quantized electromagnetic modes
turn out to be quasi-longitudinal because of the strong anisotropy of the infrared dielectric response of the layered
superconductor.
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1. Introduction

Metamaterials with negative refractive index can be
constructed by alternating metallic and dielectric layers
(see, e.g., [1–3]), forming thus a periodic heterostruc-
ture. Such kind of metamaterials conform, in fact, a
one-dimensional (1D) photonic crystal (PC), also known
as superlattice.

When the wavelength of the incident electromagnetic
field is much larger than the PC period (regime of long
wavelengths), the PC optical properties can be described
by using an effective permittivity tensor, which in general
is frequency dependent. Besides, if the principal compo-
nents of this effective permittivity tensor are of different
sign, the anisotropic medium is known as a hyperbolic
metamaterial because it can support negative refraction
while its dispersion relation represents a hyperbole equa-
tion in the wave vector space k. The advantage of hyper-
bolic metamaterials over double-negative metamaterials,
having simultaneously negative permittivity and perme-
ability, is the possibility to use metallic inclusions, in
the unit cell, of simple forms without having negative
permeability.

All metamaterials above described are made of metal
and dielectric (conventional metamaterials). In mi-
crowave and terahertz (THz) frequency ranges they pro-
duce energy losses mainly associated to the metallic com-
ponent and with the resonant generation of their mag-
netic effective response. Therefore, substantial losses are
one of the key limitations of conventional metamaterials.
A way to avoid such a disadvantage has been developed
in recent years and consists in the substitution of the
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metallic component in the metamaterial for another one,
but made of superconductor. As a result of using super-
conductors, the energy losses can be reduced in the THz
range.

As is shown in Ref. [4], layered cuprate superconduc-
tors and artificial superconducting-insulator systems are
strongly anisotropic metamaterials, which can posseses
negative index of refraction in a wide frequency range for
arbitrary incident angles. In such anisotropic metama-
terials, the permittivity tensor components, along and
transverse to the superconducting layers have different
signs above the infrared Josephson plasma frequency.
A detailed analysis of the dispersion curves for wave-
guide and surface Josephson plasma waves in a slab of
layered superconductor placed between two identical di-
electrics is reported in Ref. [5]. There, it was shown that
the eigenmodes can be resonantly excited in the slab by
means of the attenuated-total-reflection method.

In the present work, we theoretically investigate in-
frared spectra of a high-temperature layered supercon-
ductor slab. We will use the macroscopic permittivity
tensor, obtained in Ref. [4], for calculating the electro-
magnetic field inside the superconductor slab and, then,
the reflectivity and transmissivity for both TM- and TE-
polarization geometries. Specifically, we will study the
effect of the high anisotropy in the high-temperature su-
perconductor dielectric response on such spectra. Be-
sides, the effects of the slab thickness and angle of the
incident light upon infrared spectra will be analyzed. In
Sect. 2, general formulae of the permittivity tensor and
TM transmissivity for the layered-superconductor slab
are presented. The numerically-calculated transmissiv-
ity spectra for a Bi2Sr2CaCu2O8+δ slab are shown and
commented in Sect. 3. Finally, there is a section of Con-
clusions (Sect. 4).
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2. Theoretical formalism
Let us consider a high-temperature layered supercon-

ducting slab, being in vacuum and occupying the space
0 ≤ z ≤ d (see Fig. 1). The superconducting layers are
assumed to be parallel to the x–y plane. A monochro-
matic electromagnetic plane wave with p-polarization is
incident on the superconductor-slab surface at z = 0.
According to the system geometry, the magnetic field of
the wave can be expressed as

Hi = (0, Hi, 0)e
i (kxx+kzz−ωt), z ≤ 0, (1)

where ω is the frequency, kx = k sin θ and kz = k cos θ are
the components of the incident wave vector ki, k = ω/c,
c is the light velocity in vacuum, and θ is the incidence
angle. The magnetic field of the reflected wave is given by

Hr = (0, Hr, 0)e
i (kxx−kzz−ωt), z ≤ 0. (2)

At z > d the magnetic component of the transmitted
electromagnetic wave can be written as

Ht = (0, Ht, 0)e
i [kxx+kz(z−d)−ωt], z ≥ d. (3)

Fig. 1. Scheme of a high-temperature layered super-
conducting slab. ki and kr are respectively the wave
vectors of the incident and reflected light.

In the continuous limit, i.e. when the characteristic
wavelength is much larger than the period of the high-
temperature layered superconductor along the growth di-
rection (z axis), the superconductor behaves as a uniaxial
crystal with principal values of its permittivity tensor

↔
ε

given by [4]:
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where ωp = c/(λ⊥
√
ε) is the Josephson plasma frequency,

γ = λ⊥/λ|| is the anisotropic parameter given by the ra-
tio between the transverse and perpendicular magnetic
penetration depths.

Using Eqs. (4) and the Maxwell equations, the mag-
netic field of the electromagnetic wave inside the super-
conductor slab can be written as

Hs = (0, Hs(z), 0)e
i (kxx−ωt), 0 ≤ z ≤ d, (5)

where
Hs(z) = H1 e

ik(s)z z +H2 e
− ik(s)z z. (6)

The wave-vector component k(s)z is given by the formula

k(s)z =

√
εx

(
ω2

c2
− k2x
εz

)
. (7)

The electric field E for the electromagnetic waves in-
side the anisotropic superconductor and in vacuum is
calculated by employing Eqs. (1)–(6) and the Ampere–

Maxwell law (E = (ic/ω)
↔
ε
−1
∇×H). In order to de-

termine the amplitudes Hr, Ht, H1, and H2 in terms of
the amplitude of the incident wave (Hi), we should apply
the Maxwell boundary conditions, namely the continuity
of the tangential components of the magnetic and electric
field at the surfaces z = 0 and z = d. Afterwards, the
p-polarization reflectivity (Rp = |Hr/Hi|) and transmis-
sivity (Tp = |Ht/Hi|) are straightforwardly calculated.
Analytical expressions for Rp and Tp are presented in
Refs. [2, 6, 7]. The TM transmissivity is [2]:
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3. Numerical results and discussion

In this section we will apply the theoretical formalism
described above. In part (a) of Fig. 2 we present the
dispersion relation ω(k(s)z ) for transverse-magnetic (TM)
modes in Bi2Sr2CaCu2O8+δ superconductor at θ = 45◦,
which was calculated by using the formulae (4) for the
principal values of the average permittivity tensor and
Eq. (7). In the calculation, we have used the parame-
ters for Bi2Sr2CaCu2O8+δ [4]: ε = 12.0, ωp = 1012 s−1
and γ = 500. In part (b) we exhibit the spectrum of
the transmissivity Tp for a Bi2Sr2CaCu2O8+δ supercon-
ductor slab of thickness d = δ, where δ = c/(γωp

√
ε).

Here, we have neglected the energy losses in the high-
temperature superconductor.

As is seen in Fig. 2a, at frequencies ω < ωp the wave
vector k(s)z (7) is purely imaginary because both εx(ω)
and εz(ω) (4) are negative. Above the Josephson plasma
frequency (ω > ωp) the wave vector k(s)z is real and neg-
ative, since εz has changed its sign, and the refraction
index of the superconductor turns out to be negative.

It is surprising that the transmission (see Fig. 2b) in
the pass band of negative dispersion is zero in almost the
whole band except at certain frequencies, where sharp
resonances are observed. This is a direct consequence of
the high dielectric contrast between the superconductor
and vacuum. Indeed, in this case the quantity between
parenthesis in the formula (8) is rather large and, there-
fore, Tp is very small. However, at frequencies where
sin(k

(s)
z d) in Eq. (8) vanishes, the transmissivity for TM

modes is equal to unity. The later occurs when the
Fabry–Perot resonance condition is fulfilled
|k(s)z |d = nπ n = 1, 2, . . . (9)

The fact that the resonance frequencies in the infrared
transmissivity spectrum Tp(ω) correspond to values of
the quantized wave vector k(s)z can be confirmed by com-
paring the dispersion relation k(s)z (ω) (part (a) of Fig. 2)
and the transmissivity (part (b) therein).
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Fig. 2. (a) Dispersion relation ω(k
(s)
z ) for TM modes

in Bi2Sr2CaCu2O8+δ superconductor at θ = 45◦. (b)
Transmissivity spectrum Tp for the high-temperature
superconducting slab of thickness d = δ. Numbers
1, 2, . . . 5 indicate the value of n at frequencies of the
first five Fabry–Perot resonances (Eq. (9)).

It should be mentioned that the transmissivity Fabry–
Perot resonances undergo a blue shift, with increasing
the thickness d, due to the negative dispersion ω(k

(s)
z )

(Fig. 2a) for the high-temperature superconductor slab in
contrast to the red shift observed in the case of slabs hav-
ing positive refractive index. Indeed, according to Eq. (9)
(Fig. 2a), as d is increased, |k(s)z | decreases and, conse-
quently, the frequencies of the Fabry–Perot resonances
are shifted to the blue. The resonances, associated to
quantized modes, are also shifted to higher frequencies
if the angle of incidence θ is increased. The blue shift
owing to the increase of θ is clearly observed in Fig. 3,
where transmissivity spectra for TM modes at the an-
gles θ = 45◦ (solid line) and θ = 75◦ (dotted line) are
exhibited.

Fig. 3. Transmissivity spectra Tp for the high-
temperature superconducting slab of thickness d = δ
at the angles of incidence θ = 45◦ (solid line) and 75◦

(dotted line).

The z component (k(s)z ) of the wave vector for the prop-
agating TM modes inside the uniaxial superconductor
crystal (see Eq. (5)) is much larger than the x compo-
nent kx because of the high anisotropy of its dielectric
response (|−εx/εz| � 1 at ω & ωp). Certainly, as follows
from Eq. (7):

kz
kx
≈
√
−εx
εz
� 1. (10)

On the other hand, the wave vector of the electromag-
netic TM waves is perpendicular to the displacement vec-
tor D because of the Maxwell equation ∇·D = 0. Hence,
the magnitude of the z component (Ez) of the electric
field turns out to be rather large in comparison with that
of the x component (Ex) at ω & ωp:

|Ez| =

∣∣∣∣∣−kxεxk
(s)
z εz

Ex

∣∣∣∣∣ ≈
∣∣∣∣√−εxεz Ex

∣∣∣∣� |Ex|. (11)

According to Eqs. (10) and (11), the propagating TM
modes in the high-temperature superconductor are quasi-
longitudinal since their wave vector and electric field are
almost parallel to the z axis.

Finally, we should comment that the infrared spec-
tra of reflectivity (Rs) and transmissivity (Ts) for s-
polarization incident light were also calculated. Such
spectra are completely determined by the permittivity
component εy which is negative in THz range. As a re-
sult, the transverse-electric (TE) modes are evanescent
at ω ∼ ωp and Rs (Ts) is almost equal to one (zero).

4. Conclusions
Optical spectra (reflectivity and transmissivity) of a

high-temperature layered superconductor slab were cal-
culated. Such a slab behaves as a hyperbolic metama-
terial with negative refraction index just above the in-
frared Josephson plasma frequency ωp appearing in the
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expression for the effective permittivity component, εz in
Eq. (4). The calculated p-polarization transmissivity ex-
hibits narrow Fabry–Perot resonances corresponding to
quantized electromagnetic modes inside the superconduc-
tor slab. It was established that the Fabry–Perot reso-
nances undergo a blue shift if the slab thickness or the
angle of the incident light are increased. The resonance
shift, associated with the increase of the slab thickness,
is due to the negative dispersion of the pass band for the
TM modes. Besides, because of the high anisotropy of
the superconductor dielectric response |εx/εz| � 1, the
quantized TM modes (at ω ≥ ωp) turn out to be quasi-
longitudinal since their wave vector and electric field are
almost parallel to the z axis.
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