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Phase Transitions of Bosons in Optical Lattices
with a Mixture of Single and Pair Hoppings

V.M. Travin and T.K. Kopeć∗

Institute of Low Temperature and Structure Research, Polish Academy of Sciences,
P.O.B. 1410, 50-950 Wrocław, Poland

We considered Bose condensate in optical lattice with mixture of single and pair hoppings for arbitrary tem-
peratures. In order to calculate free energy of the system and determine phase transition lines between disordered
and ordered phases, the Laplace transform method has been applied. We identified several possible scenarios for
phase diagrams with phase transitions of the second kind. The results have been obtained from both analytical
and numerical methods of calculation. Finally, we obtained thermal insensitivity of the system for big values of
reduced pair hopping and (or) reduced chemical potential.
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1. Introduction

Trapping of bosons in optical lattices is possible due
to AC Stark effect. Interaction between bosons and elec-
tromagnetic field strongly depends from the state of the
atoms and polarisation of the electromagnetic field [1].
Atom in the state 2S1 possesses 2 possible quantum num-
bers mJ = ±1/2. If one radiates left-handed polarized
light σ− on the 2S1 atom with mJ = 1/2 he obtaines
atom with excited states 2P3/2 and 2P1/2 for which the
Stark effect has the same power but different signs; as a
result, total Stark effect is 0. On the other hand, right-
handed polarized light σ+ creates only one excited state
2P3/2 and total Stark effect is non-zero [2]. It means that
atoms in ground state withmJ = ±1/2 have non-zero to-
tal Stark effect only for σ± polarizations. This feature
leads to existence of so-called state-dependent lattices
that have two orthogonal states (+) and (−) containing
interacting bosons. It is possible to achieve a monochro-
matic radiation where all photons have the same polar-
ization, that is so-called well defined polarization, and
create an optical superlattice with two sublattices with
right- and left-handed polarized light [3]. Once particles
get into the superlattice they separate between two sub-
lattices due to theirs mJ = ±1/2 states. Two particles
constantly interacting with each other within one site
can change their state to the opposite one. That means
once two particles collide they do not more experience
interaction with their current sublattice anymore. As a
result, two particles move to the nearest site with an-
other state. This is a mechanism of the pairing hopping
proposed in [4]. We solved p-particle hopping problem
where p is an arbitrary integer value in [5] and this work
is an expansion where we combined both mechanisms of
particles movement in optical lattices and studied their
behaviour at arbitrary temperatures.

∗corresponding author; e-mail: t.kopec@int.pan.wroc.pl

2. Model
The second-quantized bosonic Hubbard Hamiltonian

of the ultracold atoms in a state-dependent optical lattice
with N number of sites reads [6]:

Ĥ =
U

2

∑
i

n̂i(n̂i − 1)− J1

∑
〈i,j〉

(
â†i âj +H.c.

)
−J2

∑
〈i,j〉

(
â†i â
†
i âj âj +H.c.

)
− µ

∑
i

n̂i, (1)

where index i = 1, 2, . . . , N stands for number of the
site, summation 〈i, j〉 is done over the nearest neighbors
with a coordination number z, first term represents two-
body interaction, second term — basic single hopping,
third term is pair hopping and the last term describes
interaction with environment. Operators â†i and âi are
operators of creation and annihilation of the particle in
the site i, respectively. Operator n̂i is a density operator
n̂i = â†i âi of the particles in site i. U is a two-body
interaction energy, J1 is a single hopping energy, J2 is a
pair hopping energy and µ is a chemical potential that
controls number of particles in the system.

We used mean-field theory of the creation and anni-
hilation operators considering them as fluctuations near
their expectation values.

â†i = Φi + δ†i , â†i â
†
i = Ψi + η†i ,

âi = Φi + δi, âiâi = Ψi + ηi,

where Φi and Ψi are order parameters for single and pair
hoppings, respectively, and can be calculated as statisti-
cal averages

Φi = 〈âi〉, Ψi = 〈âiâi〉, (2)
where we use a definition of the statistical average as fol-
lows:

〈. . .〉 =
Tr
(
. . . e−βĤ

)
Tr e−βĤ

, (3)

where β = 1
kBT

, kB is the Boltzmann constant and T is
a temperature.
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After a substitution of the mean-field operators repre-
sentation into the model Hamiltonian one obtaines mean-
field Hamiltonian (1) as follows:

Ĥ = NĤ, Ĥ = Û + V̂ , (4)

Û =
U

2
n̂(n̂− 1)− µn̂− J2zΨ(ââ+ â†â†),

V̂ = −J1zΦ(â+ â†), (5)
where Ĥ is a one site mean-field Hamiltonian and N is a
number of sites. Value z is a coordination number.

In this case one can calculate partition function of the
system

Z =
(
Tr e−βĤ

)N
. (6)

When one knows partition function it is easy to calcu-
late free energy

f = − 1

βN
lnZ. (7)

The feature of this problem is that one has two order
parameters Φ and Ψ for single and pair hoppings, respec-
tively, having only one mixture of bosons. Partition func-
tion Z includes only diagonal terms of the matrix expo-
nent. It means that terms like (J1)

2J2z
3Φ2Ψ â×a× â†â†

also have nonzero contribution. Finally, free energy is
nonsymmetric upon Φ ↔ Ψ transformation. Based on
the said above we can write down first terms of free en-
ergy without direct calculation

f = f0 +A1Φ
2 +A2Ψ

2 +BΦ2Ψ

+C1Φ
4 + C2Ψ

4 +DΦ2Ψ2 + . . . (8)
In order to build phase transition lines one has to find
minima of a free energy. It can be done via self-consistent
equations calculation

∂f

∂Φ
= Φ

{[
J1z −

1

β

ZΦ
2

Z0

]
− 1

β

Z3

Z0
Ψ

− 2

β

[
ZΦ

4

Z0
−
(
ZΦ

2

)2
2Z2

0

]
Φ2 − 1

β

ZΦΨ
4

Z0
Ψ2

}
= 0, (9)

∂f

∂Ψ
= − 1

β

Z3

Z0
Φ2 +Ψ

{[
J2z −

1

β

ZΨ
2

Z0

]

− 2

β

[
ZΨ

4

Z0
−
(
ZΨ

2

)2
2Z2

0

]
Ψ2 − 1

β

ZΦΨ
4

Z0
Φ2

}
= 0. (10)

Self-consistent Eq. (10) breaks symmetry of solutions be-
tween Φ and Ψ , because it cannot be satisfied for a situ-
ation when (Φ 6= 0, Ψ = 0). In this case, there are 3 out
of 4 possible solutions for order parameters

Φ = 0, Ψ = 0;

Φ = 0, Ψ 6= 0;

Φ 6= 0, Ψ 6= 0.

In this case we have to calculate phase transition line for
the second region, because first region is given by iso-
lated single and pair hoppings problems considered to be

known and the third region can be obtained by excep-
tional principle.

The idea of calculations lies in the Laplace transform
method. Partition function can be written down in the
following way:

Z = e−NβJ1zΦ
2−NβJ2Ψ2

[Z ′]N , (11)

Z ′ =
∫
Γ

ds

2π i
eβsTr

[
1

s+ Û + V̂

]
. (12)

It can be shown that expression under the integral can
be transformed as follows [7, 8]:

Z ′ −Z0 = β

1∫
0

dg

g

∫
Γ

ds

2π i

×eβsTr

[ ∞∑
k=1

(−1)k
[
g(s+ Û)−1V̂

]k]
, (13)

where Z0 = Tr e−βÛ .
The last representation of the partition function can

be read as direct expansion of the partition function with
respect to order parameter Φ that is small near the phase
transition line of the Φ = 0,Ψ 6= 0 region while Ψ is
arbitrary value.

We expanded free energy up to forth degree of the order
parameter Φ and numerically calculated coefficients of
the expansion

f = − 1

β
lnZ0(Ψ) +

[
J1z −

1

β

Z2(Ψ)

Z0(Ψ)

]
Φ2

+
1

β

[
Z4(Ψ)

Z0(Ψ)
− Z2

2 (Ψ)

2Z2
0 (Ψ)

]
Φ4, (14)

where Z2(Ψ) can be obtained from the second order of
the partition function expansion (13), and Z4(Ψ) from
the fourth order of the same partition function expansion.

The idea behind the numerical calculations is a trun-
cated Hamiltonian that can be represented as a ma-
trix and substituted into the partition function expan-
sion (13). Order parameter Ψ was calculated also nu-
merically from its definition.

In this model free energy depends on 5 physical values:
T , J1, J2, U , µ. First, we fix two-body interaction and
relates other values to the energy U . It means that we
consider dimensionless parameters that are so-called re-
duced single hopping zJ1/U etc. Second, we study phase
diagrams at fixed temperature. Finally, we fix reduced
pair hopping and look on phase diagrams for the single
hopping. It has been done due to a fact that phase tran-
sition line is given by equation that can be obtained from
the coefficient before Φ2 in (14):

J1z

U
= β

Z0(µ)

Z2(1, J2, µ)
, (15)

where Z2(J1, J2, µ) is a quadratic terms coefficient of par-
tition function expansion. This equation is correct due
to the fact that Z2(J1, J2, µ) ∝ J2

1 z
2.

We should notice that this equation also satisfies for
pair hopping phase transition line. The last formula is
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transcended with respect to pair hopping energy J2 and it
makes sense to produce phase diagrams for single hopping
with arbitrary values of J2 and then invert function J1 =
J1(J2)→ J2 = J2(J1).

3. Results

We calculated phase transition lines of the bosonic sys-
tem at different temperatures. Analysis shows us that we
have 3 different phase transition lines of the second kind:
(i) between Φ = 0,Ψ = 0 and Φ = 0,Ψ 6= 0; (ii) be-
tween Φ = 0,Ψ = 0 and Φ 6= 0,Ψ 6= 0; (iii) between
Φ = 0,Ψ 6= 0 and Φ 6= 0,Ψ 6= 0.

Fig. 1. Phase transition line for the single hopping
with a fixed pairing hopping J2/U = 0.075 at zero tem-
perature. DD region stands for disordered-disordered
phase Φ = 0, Ψ = 0, DO region stands for disordered-
ordered phase Φ = 0, Ψ 6= 0 and OO stands for ordered-
ordered phase Φ 6= 0, Ψ 6= 0. On the edge between DD
and OO phases one has a straight phase transition line
of a second kind for the pair hopping.

Fig. 2. Set of the phase transition lines at zero temper-
ature (above) and at kBT/U = 0.06 (below) with differ-
ent values of the pair hopping energies. For kBT/U =
0.06 phase transition lines with different values of J2/U
go to the close value with increase of the chemical po-
tential. Increase of the pair hopping leads to the shift
of the edge between DD and DO phases to the smaller
values of reduced chemical potential.

Fig. 3. Phase transition surface created by combina-
tion of the set of the phase transition lines with fixed
pair hopping. As DD we represent phase transition
surface between disordered-disordered phase (below the
surface) and ordered-ordered phase (above the sur-
face); as DO we represent phase transition surface
between disordered-ordered phase (below the surface)
and ordered-ordered phase (above the surface). Phase
transition surface between disordered-disordered and
disordered-ordered phases matches the surface that can
be created upon projection of the boundary between DD
and DO onto the (J2z/U, µ/U) plane.

As one can see in Fig. 1 for DD region phase transition
line matches pure single hopping problem while appear-
ance of the pairing hopping in DO leads to decrease of
the disordered phase region near the critical point. Nev-
ertheless, with increase of the chemical potential pairing
hopping leads to increase of the disordered phase region
in general.

As mentioned before we fixed temperature and two-
body interaction. After the fixation free energy can be
represented as a function of 3 variables which means that
one has not a phase transition line but phase transition
surface. In Fig. 2 one can see cross-sections of that sur-
face. In our work we built huge amount of cross-sections
and their combination lets us reproduce full picture that
one can see in Fig. 3. Finally, due to the independence
and equality of single and pair hoppings we reproduce
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Fig. 4. Phase transition lines of the pair hopping with
a fixed single hopping. In our representation colour
regions stand for single hopping disordered phase and
their edges are phase transition lines of the second kind
for single hopping. The line PH PT stands for pair hop-
ping phase transition line in such way that below this
line one has disordered phase for the pair hopping and
ordered phase above. Total phase of the system can
be obtained by overlay of the disordered and ordered
regions for both hoppings. One should remember that
OD cannot exist. On the legends one has values of the
single hopping energies J1z/U .

a dependence of a reduce pair hopping J2z/U from a
reduced chemical potential µ/U on the Fig. 4 that in
fact are cross-sections of the phase transition surface.

4. Conclusions

We studied behaviour of the bosonic atoms in a ho-
mogeneous state-dependent optical lattice. It was pos-
sible to build phase transition surface in J1z/U , J2z/U
and µ/U axes and study behaviour of the phase transi-
tion with a temperature increase. Upon increase of the
chemical potential for the fixed pair hopping we obtained
vanishing of the loops and spread of the disordered single
hopping phase. Next, we found out a thermal indepen-
dence of the system for big values of reduced pair hopping
or(and) reduced chemical potential. We suppose that one
should consider bigger temperatures in order to observe
changing of the phase transition surface in discussed re-
gion, but one still can say that pair hopping leads to
the thermal stability of the system and it becomes less
sensitive to the temperature changing.
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