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The extended Hubbard model with the pair-hopping interaction, i.e. the Penson–Kolb–Hubbard model, is one
of the conceptually simplest phenomenological models for studying correlations and for description of superconduc-
tivity in very narrow-band systems with short-range, almost unretarded pairing. We present ground state phase
diagrams of the model derived within the broken-symmetry Hartree–Fock approximation in the narrow-bandwidth
regime and compare these results with the exact ones in the atomic limit for the limit of high dimensions. The in-
vestigation of the diagrams of the model show that results obtained within both approaches are consistent, although
for the case of the finite single-electron hopping phases with magnetic long-range order also occur.
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1. Introduction

Superconductivity (SC) with very short coherence
length is still interesting and intriguing phenomenon due
to its possible relevance to high-temperature supercon-
ductors (cuprates, doped bismuthates, iron-based sys-
tems, fullerenes) and also to several other exotic super-
conducting materials (for a review, see [1–4] and refer-
ences therein). It can also give insight into behaviour of
strongly bound fermion pairs on the optical lattices.

The Penson–Kolb–Hubbard Hamiltonian considered in
this work has the following form (e.g. [5–12]):

Ĥ =
t√
z

∑
〈i,j〉,σ

(
ĉ+iσ ĉjσ + ĉ+jσ ĉiσ

)
+ U

∑
i

n̂i↑n̂i↓

−J
z

∑
〈i,j〉

(
ρ̂+
i ρ̂
−
j + ρ̂+

j ρ̂
−
i

)
− µ

∑
i

n̂i, (1)

where n̂i =
∑
σ n̂iσ, n̂iσ = ĉ+iσ ĉiσ, ρ̂

+
i = (ρ̂−i )† = ĉ+i↑ĉ

+
i↓;

ĉiσ (ĉ+iσ) denotes the annihilation (creation) operator of
an electron with spin σ =↑, ↓ at the site i.

∑
〈i,j〉 indi-

cates the sum over nearest-neighbour sites i and j inde-
pendently. z denotes the number of nearest neighbours
(z = 2d for d-dimensional hypercubic lattice). Finally, µ
is the chemical potential defining concentration of elec-
trons in the system: n = 1

N

∑
i 〈n̂i〉, with 0 ≤ n ≤ 2 and

N is the total number of lattice sites. 〈Â〉 is the average
value of operator Â. Model (1) is a generalization of the
Penson–Kolb model (e.g. [13–16]) to the case of U 6= 0.

It was proven that all interactions between particles on
different sites get trivial in the limit of high dimensions
(d → +∞) (or equivalently the large coordination num-
ber limit: z → +∞) [17, 18] and may be treated in the
(Hartree) mean-field approximation (MFA):
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Fig. 1. Ground state diagrams of Hamiltonian ĤAL

(atomic limit, t = 0) for |K| 6= 0 as a function of
µ̄ = µ − U/2 (a); and as a function of n (b). It is an
exact result for d→ +∞. Details in the text of Sect. 2.

ρ̂+
i ρ̂
−
j ≈ ∆+

i ρ̂
−
j + ∆−j ρ̂

+
i −∆+

i ∆
−
j , (2)

where ∆+
i = 〈ρ̂+

i 〉 and ∆−j = 〈ρ̂−j 〉 are the SC order pa-
rameters. The Hubbard on-site U interaction is the only
interaction which remains dynamical at d → +∞ [17–
19]. The relevant question is how accurate the stan-
dard broken-symmetry Hartree–Fock mean-field approx-
imation (HFA) (cf. Eq. (3)) for the U term is? The an-
swer to this question is very important because various
approximate (in particular mean-field) schemes can in-
troduce different “artificial” effects and could not predict
proper solutions [1, 19–21]. For general case of U 6= 0 the
dynamical mean field theory is an exact one for the stan-
dard single-band Hubbard model [19], but it cannot be
used for the extended Hubbard model with pair-hopping
J term (model (1)).

In this report we check the validity of the HFA for the
ground state of model (1) in the limit of very narrow
bandwidth (t → 0 or U/t � 1) and d → +∞. Section 2
includes the rigorous results obtained in the atomic limit
for d → +∞. Section 3 is devoted to the discussion
of the HFA results for small, but finite t. Conclusions
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in Sect. 4 close the presentation. Due to the electron–
hole symmetry of model (1) the diagrams presented are
symmetric under the transformation n↔ 2−n [1, 22–24].

2. Results in the atomic limit

In this section we present a brief review of the zero-
temperature results for the atomic limit (t = 0) of
model (1) derived in [22–25]. For large U, |J | � t the
effective magnetic interaction in model (1) can be ob-
tained as Keff ≈ −4t2/(U − |J |). In order to capture the
magnetically ordered phases in the atomic limit we ad-
ditionally introduce effective magnetic interactions Kz,
Kxy in the form

ĤM = −(2Kz/z)
∑
〈i,j〉

ŝzi ŝ
z
j

−(Kxy/z)
∑
〈i,j〉

(
ŝ+
i ŝ
−
j + ŝ+

j ŝ
−
i

)
,

where ŝzi = (n̂i↑ − n̂i↓) /2, and ŝ+
i =

(
ŝ−i
)†

= ĉ+i↑ĉi↓[21, 25]. In the atomic limit (t = 0) one can obtain
exact results for model ĤAL = Ĥ(t = 0) + ĤM (where
Ĥ(t = 0) denotes model (1) with t = 0) for z → +∞ us-
ing variational approach which treats U term exactly and
intersite terms within MFA (cf. Eq. (2)) [21–25]. Note
that the Coulomb interactions between nearest neighbors
have usually higher values thanK and J interactions, but
only effects of effective K interactions are of our interest
in the context of the results for model (1) presented in
Sect. 3.

Fig. 2. Ground state diagrams for D = 2t 6= 0, J > 0,
and U/D = 5, 10, 40 (solid, dashed and dotted lines,
respectively). The dashed-dotted line denotes the rigor-
ous result for the SS–NO boundary in the atomic limit
(part (b)).

The ground state phase diagrams for ĤAL are shown
in Fig. 1. The model ĤAL exhibits symmetry J ↔
−J and for J > 0 the s-wave SC (SS) can occur on
the diagrams for sufficiently small (U + |K|)/J (|K| =
max{|Kz|, |Kxy|}), whereas for J < 0 the η-wave SC
(ηS) is stable. For larger (U+ |K|)/J the magnetic (MG)
phase occurs, which can be either ferromagnetic (F) or
antiferromagnetic (AF). If |Kz| > |Kxy| magnetic order
occurs in z-axis direction (F for Kz > 0 and AF for
Kz < 0), if |Kxy| > |Kz| magnetic order is in xy-plane
(F for Kxy > 0 and AF for Kxy < 0) [21, 25]. The SC–
MG boundary is discontinuous for fixed µ̄ = µ − U/2
(Fig. 1a) and the phase separated (PS) state occurs:
PS:SC/MG in definite range of n (it is coexistence of
the SC and MG phases, Fig. 1b). For |K| = 0 the MG
phase changes into the non-ordered (NO) phase and the
diagrams preserve their forms shown in Fig. 1 with the
change MG→NO [22–25]. The PS:NO/NO state is de-
generated with homogeneous NO phase [25].

In Fig. 1b dashed-dotted line denotes the discontinuous
boundary between SC and MG phases located at (U +
|K|)/|J | = 1 + |1 − n| if the phase separated states are
not considered (in such case only homogeneous SC and
MG phases can occur on the diagrams, also cf . [22–25]).
For |K| = 0 the NO phase occurs.

Fig. 3. Ground state diagrams for D 6= 0, J < 0,
and U/D = 5, 10, 40 (solid, dashed and dotted lines,
respectively). The dashed-dotted line denotes the rigor-
ous result for the ηS-NO boundary in the atomic limit
(part (b)).

3. Diagrams for the finite hopping

For t 6= 0 we use a standard broken-symmetry Hartree–
Fock mean-field approximation for U term in (1) (with
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electron Wick theorem for averages of fermion operators):
n̂i↑n̂i↓ = ĉ+i↑ĉi↑ĉ

+
i↓ĉi↓ ≈ ni↑n̂i↓ + ni↓n̂i↑ − ni↑ni↓

+∆+
i ρ̂
−
i + ∆−i ρ̂

+
i −∆+

i ∆
−
i −m

+
i ŝ
−
i −m

−
i ŝ

+
i

+m+
i m
−
i , (3)

where niσ = 〈n̂iσ〉, m+
i = 〈ŝ+

i 〉, m
−
i = 〈ŝ−i 〉 and ∆+

i ,
∆−i , ŝ

+
i , as well as ŝ

−
i are defined previously. In such an

approximation the magnetic orderings in z-axis and xy-
plane are degenerated (i.e. isotropic magnet, the order
along any axis in space can occur). For J term the MFA
decoupling is applied (Eq. (2)).

In the following the semi-elliptical density of states

(SE-DOS) is used: D(ε) = 2
πD2

√
1− (ε/D)

2 for |ε| <
D = 2t, where D is half-bandwidth. The SE-DOS is
an exact result for the Bethe lattice in the limit z →
+∞ [19]. In general, the advantage of using this DOS is
that it is continuous, confined, has sharp band edges and
decreases near the edges of band as

√
∆ω, where ∆ω is a

distance from the band edge. However, the shape of DOS
in the limit t→ 0 considered here is not very important.

For better readability and clarity in this section we
do not consider phase separated states, which can occur
on the phase diagrams (cf . Sect. 2 and [10, 12]). All
transitions discussed below are discontinuous ones.

Fig. 4. Ground state diagrams for D = 2t 6= 0 and
J/D = 5, 10, 20 (solid, dashed and dotted lines, re-
spectively). The dashed-dotted line denotes the rigor-
ous result for the SS–NO boundary in the atomic limit
(part (b)).

For U � D (and for |J | � D) the structure of all pre-
sented ground state phase diagrams plotted as a function
of n are qualitatively similar. On the diagrams three ho-
mogeneous phases occur: superconducting (SS for J > 0

Fig. 5. Ground state diagrams for D 6= 0 and J/D =
−5,−10,−20 (solid, dashed and dotted lines, respec-
tively). The dashed-dotted line denotes the rigorous
result for the ηS–NO boundary in the atomic limit
(part (b)).

or ηS for J < 0), ferromagnetic (F), and antiferromag-
netic (AF). The diagrams for fixed values of U/D � 1 are
presented in Fig. 2 (for J > 0) and in Fig. 3 (for J < 0).
Figures 4 and 5 are plotted for several fixed positive and
negative, respectively, values of J/D. The case of large
attractive U (U < 0 and |U | � D) is not considered in
this paper. It is because negative U stabilizes supercon-
ducting phases for any n and only the SC phases occur
for U < 0 (and: |U | � D or |J | � D) [1, 5, 7–12].

The magnetic (MG) phases (F or AF) are stabilized
by large enough U/|J |, whereas large |J |/U favours the
SC phases (SS or ηS depending on the sign of J). The
AF phase occurs near n ' 1 and the F phase is stable
away from half-filling. The SC phases can occur for any
n. The AF–F boundary depends on U/D (and n) and
is independent of |J |/D for fixed U/D. For any t 6= 0
the symmetry J ↔ −J is broken [6–8, 23, 24], but for
U � D it is revealed.

It is clearly seen that with increasing U/D the SC–MG
boundaries approach to the boundaries derived rigorously
at atomic limit (t = 0) (cf . Figs. 2b and 3b). The
boundaries for the SC phases for t = 0 can be considered
as a continuous limit of HFA results in the limit t → 0
(small but finite t). However, small t 6= 0 introduces
magnetic ordering (intersite magnetic interactionsKeff ≈
−4t2/U for U � t, |J | [26]) and the competition between
ferromagnetic and antiferromagnetic order with changing
n occurs. The distance between the SC–F boundary (for
t 6= 0 and fixed: U/D or J/D) and the SC–NO line (for
t = 0) decreases with increasing n (Figs. 2b–5b). Notice
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also that near n = 1 the SS–AF boundary for t 6= 0 is
located very near the SS–NO line for t = 0 (Figs. 2b
and 4b) in contrary to the ηS–AF line, which is moved
towards higher |J |/U (Figs. 3b and 5b).

4. Concluding remarks

In this report, we have studied the t → 0 limit of the
Penson–Kolb–Hubbard model at the ground state. For
zero-temperature we have evaluated the phase diagrams
of the model at fixed n and determined the ranges of the
homogeneous phases occurrence in the system for small,
but finite, single-electron hopping integral. It is very sur-
prising and interesting that the HFA decoupling of the U
term in the limit t → 0 (but t 6= 0) gives reasonable re-
sults which are in coincidence with exact results for t = 0
(in the limit d→ +∞) at least in the ground state. Obvi-
ously, the HFA for the U term (U � t 6= 0) overestimates
largely critical temperatures [1].

We have found that the following transitions can occur
on the ground state phase diagram of model (1) in the
limit U � D (D = 2t 6= 0): (a) SS/ηS ↔ F, (b) SS/ηS
↔ AF, and (c) F↔ AF. All these transitions are discon-
tinuous which suggests that the phase separated states
have lower energy and they can occur on the diagrams.
The study of the diagrams including phase separation for
t 6= 0 is left for future investigations.

For U/D / 2 or |J |/D / 2 the structure of the dia-
grams changes significantly [5–8, 10] in comparison to the
diagrams shown in the present paper, but these ranges
of the parameters are beyond the scope of this work.

In this paper we have concentrated only on the loca-
tion of the phase boundaries. Thus, the difference be-
tween free energies of the phases near the boundaries is
investigated. We do not discuss the behaviour of the free
energy with changing the parameters of the model.
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