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Phase Diagrams of the Penson–Kolb–Hubbard Model
with Repulsive Pair–Hopping Interaction
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We study the extended Hubbard model with on-site density–density U and intersite pair hopping J interactions,
i.e. the Penson–Kolb–Hubbard model. This report focuses mainly on the properties of the model at T ≥ 0 in
the case of repulsive J (J < 0) which may stabilize superconductivity with η-pairing. The analysis is performed
within the (broken symmetry) Hartree–Fock approximation for arbitrary interaction parameters (J < 0 and U)
and electron concentration (0 < n < 2) on the d = 2 square lattice. The phase diagrams of the model at T = 0 and
at finite temperatures are examined taking into account magnetic and charge-ordered phases and superconducting
states with η- and s-wave pairing.
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1. Introduction

The Penson–Kolb–Hubbard (PKH) model is one of the
conceptually simplest models for studying superconduc-
tivity with short coherence length and for description of
various superconducting, magnetic and other electron or-
derings in narrow band systems [1–14]. Its Hamiltonian
has the form

H = −
∑
ijσ

tij
(
c+iσcjσ + H.c.

)
− µ

∑
iσ

c+iσciσ

+U
∑
i

ni↑ni↓ −
1

2
J
∑
〈ij〉

(
c+i↑c

+
i↓cj↓cj↑ + H.c.

)
, (1)

where niσ = c+iσciσ, tij is the single electron hopping inte-
gral, U is the on-site density–density interaction, J is the
pair hopping (intersite charge exchange) interaction, µ is
the chemical potential. 〈ij〉 restricts the sum to nearest
neighbors (nn) and n = 1

N

∑
iσ〈niσ〉.

In general, the model includes two pairing mechanisms:
(i) nonlocal pairing mechanism (the intersite pair hop-
ping term J) and (ii) the on-site interaction U , if U < 0.
In the following we will focus mainly on the case of re-
pulsive J (J < 0) which can stabilize superconducting η-
pairing order, i.e. the state with the Cooper-pair center-
of-mass momentum q = Q (Q = Π

a ,
Π
a , . . .,). We will

discuss the stability of the homogeneous superconducting
states including s-wave (S) and η-pairing (eta) as well as
the magnetic (antiferromagnetic (AF) and ferromagnetic
(F)) and charge-ordered (CO) phases in the considered
system. The analysis is performed at T = 0 and for fi-
nite temperatures. In the case of superconducting states
the conditions for the crossover to the Bose–Einstein con-
densation (BEC) regimes are derived. Some preliminary
results concerning the T = 0 phase diagrams have been
presented in Ref. [9] for J < 0 and in Ref. [8] for J > 0.
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2. Results and discussion

As in Ref. [2] our analysis is based on the (broken
symmetry) Hartree–Fock approximation (HFA). In the
derivation of the eigensolutions we have assumed an al-
ternate lattice, i.e. εk+Q = −εk. The stable solutions are
determined for arbitrary electron concentration n as the
minimum of the free energy of the system F with respect
to the variational parameters xα (α = AF,F,CO,S, η),
the Fock term p = 1/4N

∑
kσ γk

〈
c+kσckσ

〉
and µ, i.e. by

the equations
∂F

∂xα
= 0,

∂F

∂p
= 0,

∂F

∂µ
= 0, (2)

from which we get sets of self-consistent equations for
each ordering type. The order parameters for considered
homogeneous phases are: (i) η-pairing superconductivity:
xη = 1

N

∑
i exp(Qi·Ri) 〈ci↓cι↑〉, (ii) s-wave pairing super-

conductivity: xs = 1
N

∑
i 〈ci↓cι↑〉 = 1

N

∑
k 〈c−k↓ck↑〉, (iii)

charge ordered: xCO = 1
2N

∑
i,σ exp(Qi · Ri)

〈
c+iσcισ

〉
,

(iv) ferromagnetic: xF = 1
N

∑
i,σ σ

〈
c+iσcισ

〉
, (v) antifer-

romagnetic: xAF = 1
2N

∑
i,σ σ exp(Qi ·Ri)

〈
c+iσcισ

〉
.

The crossovers to the BEC regimes for S and η phases
are located after Leggett [15]: from the requirement that
µ̄ in superconducting phase reaches the bottom of the
electronic band, i.e. from µ̄ = µ − U/2 = −B/2, where
B = 2zt is the bandwidth (z — the number of nn) and µ̄
for a given phase is determined from the self-consistent
Eqs. (2) which are solved at T = 0.

We have performed analysis of the phase diagrams of
the model (1) at T ≥ 0 for square (SQ) lattice and ar-
bitrary n (0 < n < 2) involving magnetic orderings for
repulsive U (U > 0), charge orderings for attractive U
(U < 0) and the superconducting states for U > 0 and
U < 0. Due to the electron–hole symmetry of the system
the plotted diagrams are symmetric under the transfor-
mation n→ 2− n.

The electronic spectrum of the η-phase consists of two
branches E+

k and E−k and the minimum gap between the
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lower and higher band Emin
g = minE+

k −maxE−k can be
either positive or negative, depending on interaction pa-
rameters and temperature [9, 16, 17], which is in contrast
with the s-wave phase, where Eg > 0 for any T < Tc.

Figures 1 and 2 present examples of the ground state
phase diagrams as a function of interactions and car-
riers concentration n. In the diagrams the transitions
to nonordered phase (N) are of the 2nd order, and the
transitions between ordered states are of the 1st order.
Dashed lines on the figures mark the borders between
strong-η- and weak-η-phases (defined later).

In the strong η phase at T = 0 the order parameter
xη takes its maximum value xmax

η = 1/2
√
n(2− n) (the

same as for t = 0 [11–14]) and Emin
g > 0, while for the

weak η state xη < xmax
η , and Emin

g < 0. For more detailed
discussion of these two η states see Ref. [9, 16–18]. In
addition to the ground state phase boundaries, we denote
in the figures the crossovers to the BEC regimes (dashed-
dotted lines). As we see in definite ranges of interaction
parameters the crossover to BEC regimes (both for s-
wave phase — Fig. 1 and for η-phase — Figs. 1, 2) can
be obtained by changing the electron density.

Fig. 1. The ground state phase diagram as a function
of pair-hopping interaction J and concentration n for
fixed U/4t = −1. In the diagram, at J = 0 and
J = −0.3 there are changes of scale on the J axis. Deno-
tations: s-wave superconductivity (S), charge-ordering
(CO), η-pairing state (eta). Dashed line marks the bor-
der between strong- and weak-η phases, and dash-dotted
lines denote crossovers to BEC regimes (SQ lattice).

In Fig. 1 we show the ground state phase diagram of
the system as a function of J vs. n plotted for fixed
U/4t = −1. Due to competition between attractive U
and repulsive J the charge-ordered phase and s-wave
pairing superconductivity can be stable in the phase dia-
gram within limited ranges of the model parameters (cf.
also Fig. 3 in [9]). The CO phase may occur only close
to n = 1 and at half-filling, while S phase survives only
for small repulsive values of J and obviously for J > 0.
For strong attractive U as that in Fig. 1, the nonordered
state (N) does not appear on a diagram. As we can see

Fig. 2. The ground state phase diagram as a function
of U and concentration n for fixed J/4t = −1. Denota-
tions: nonordered phase (N), ferromagnetism (F), anti-
ferromagnetism (AF). Other denotations as in Fig. 1.

on the plot the η-phase is stable only below certain crit-
ical value Jc < 0 dependent on n. Within the η-phase,
there exists a second characteristic value of J , which we
denote Jc1 and |Jc1| ≥ |Jc|. For SQ lattice considered in
this work Jc1 = −U/z − 2t for any n. For |J | > |Jc1|
the ground state of the system is characterized by a non-
zero gap Emin

g and by the order parameter which takes its
maximum value xmax

η (see Fig. 3). In this case the system
exhibits the strong η-pairing phase. On the other hand,
weak η-pairing phase is realized for |Jc| < |J | < |Jc1| :
Emin
g = 0 and xη < xmax

η . At T = 0 the transition be-
tween the strong and weak η-phase takes place at J = Jc1
when Emin

g = 0. The range of n of stable weak-η phase
shrinks with increasing J (J < 0) and this phase can
exist only for J < Jc < 0.

For large |J | superconducting η-phase is stable within
the whole range of concentration n (0 < n < 2).

Increasing attractive U increases |Jc| and |Jc1|. In def-
inite ranges of J the crossovers to BEC regimes occur as
n is reduced, both for η and s-wave phases (dash-dotted
curves in Fig. 1).

Figure 2 presents the U vs. n phase diagram of the
system for fixed J/4t = −1. For repulsive U (U > 0) the
η pairing competes with magnetic orderings and can be
stable only for U < Uc. In general, the critical value Uc
depends on n, the form of density of states and the value
of J . Obviously, Uc decreases with increasing |J |. Within
the region of strong-η phase stability the crossover to the
BEC (eta) regime takes place with decreasing n, similarly
as in the case shown in Fig. 1.

To clearly demonstrate the nature of the η-phase in-
duced by pair hopping interaction J , we plot in Fig. 3
the ground state results for the case U = 0. The figures
show the η-phase order parameter xη as a function of n
for several fixed values of J/2t (Fig. 3a) and as a func-
tion of J , for representative values of n (Fig. 3b). In the
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Fig. 3. The ground state plots of (a) the η-pairing or-
der parameter xη as a function of concentration n for
fixed values of J/D: J/D = −0.25; J/D = −0.3;
J/D = −0.4; J/D = −0.5 and (b) the η-pairing or-
der parameter xη and the gap between the lower and
higher quasiparticle band Emin

g as function of interac-
tion J for fixed values of n: n = 1.0; n = 0.5; n = 0.1.
The Emin

g versus J line (the same for any n plotted) is
denoted with black squares (�). SQ lattice, U = 0.

strong η-phase region (|J | ≥ |Jc1| = 2t) superconducting
η-phase is stable within the whole range of concentration
n (0 < n < 2). In this regime as we have mentioned
earlier Emin

g > 0, and the magnitude of the order param-
eter xη assumes its maximum value xmax

η . In the weak-η
regime (|J | < |Jc1| = 2t) the η-phase can occur only
within a limited range of n, xη < xmax

η and Emin
g < 0.

The concentration range of η-phase stability shrinks with
decreasing |J |. The magnitude of parameter xη decreases
with decreasing |J | and n. Close to phase boundary with
N phase the xη quickly vanishes with J → Jc and with
n → nc. When the ordered phase sets in for |J | > |Jc|,
the order parameter xη continuously increases till it at-
tains its maximum value (dependent on n) in the strong-η
phase.

With increasing T the system can exhibit several dif-
ferent types of behavior depending on the values of in-

teraction parameters and n. The transitions from N to
ordered phases are of the 2nd order and those between
ordered phases are of the 1st order. Examples of the fi-
nite temperature phase diagrams for repulsive U (U > 0)
are plotted in Fig. 4 as a function of concentration n and
in Fig. 5 as a function of U .

Fig. 4. Finite temperature phase diagram T vs. n plot-
ted for U/4t = 2.2 and J/4t = −1 for SQ lattice. Filled
dots denote the triple points.

Fig. 5. Finite temperature phase diagram T vs. U
plotted for SQ lattice, n = 0.9 and J/4t = −1. Filled
dot denote the triple point.

In the phase diagram plotted as a function of n (Fig. 4)
one can observe the following sequences of phase transi-
tions with increasing T : (i) a single 2nd order transition
η → N , (ii) a sequence of two transitions: 1st order
η → F , 2nd order F → N , (iii) a sequence of three tran-
sitions: two 1st order η → F → AF and 2nd order one
AF → N , (iv) a sequence of two transitions: 1st order
F → AF , 2nd order AF → N and (v) a single 2nd order
transition AF → N . In our diagram two triple points ap-
pear marking transitions between (i) N, η and F phases
and (ii) N, F and AF phases.
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The diagram T versus U in the repulsive range of U
calculated for fixed values of J and n (Fig. 5) shows that
with increasing T the system can exhibit: (i) a single
2nd order transition η → N , (ii) in a limited range of
U , reentrant AF phenomenon with a sequence of three
transitions: two 1st order η → AF → η and one 2nd
order η → N , (iii) a sequence of two transitions: 1st
order η → AF and 2nd order AF → N , (iv) a single
2nd order transition AF → N and finally (v) a sequence
of two transitions: 1st order F → AF and 2nd order
AF → N . In the diagram a triple point appears as a
critical point between N, η and AF phases.

3. Final remarks

In the model considered the η pairing state can be sta-
ble only above some critical values of repulsive |J | depen-
dent on U and n. The system in this state never exhibits
standard BCS features (cf. also [2, 16–18]). This be-
haviour is in contrast with the properties of the isotropic
s-wave state, which for U ≤ 0 is stable for any attractive
J > 0, and the system exhibits a smooth crossover from
the BCS-like limit to the BEC regime with increasing
J [2, 6, 19–22]. In the case of η pairing we have also found
the crossover to BEC regime which can take place in the
range of stability of strong-η phase as electron density is
reduced (cf. Figs. 1 and 2)). Regarding the influence of
the on-site interaction U , attractive U (U < 0) expands
the range of stability of η-phase at T = 0 towards lower
values of |J | (|J0| ⇒ |J0|+ |U |). The η-phase can survive
also for repulsive values of U (0 < U < Uc). Interplay
between U and J can stabilize several new phases, mag-
netic and charge ordered and generate various interesting
sequences of phase transitions occurring with increasing
temperature.

In this report we have concentrated on the phase di-
agrams of the model at T ≥ 0 taking into account only
simple types of various homogeneous electron orderings.
The analysis of electromagnetic properties of the model
and consideration of mixed orderings and phase sepa-
rated states will be presented elsewhere [16].
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