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Jack Polynomials and Fractional Quantum Hall Effect
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We investigate properties of strongly correlated, spinless electrons confined within given Landau level at filling
factor ν = 1/3. Our analysis is based on the formalism of the Jack polynomials. Selected Jack polynomial wave
functions are compared with ground states of the Coulomb interaction Hamiltonians, in different materials and
the Landau levels, obtained by exact diagonalization. We show that certain Jack wave functions can be used as a
description of fractional quantum Hall states.
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1. Introduction

The Jack polynomials (Jacks) [1–6] have been related
to the fractional quantum Hall effect (FQHE) by a num-
ber of authors [7–15]. The Jack polynomial Jαλ is indexed
by a real parameter α and a partition λ. Partition is a
series of nonnegative integers in a decreasing order. In
FQHE partitions are usually represented in a following
way: starting from zero, a number in the i-th place in-
dicates a number of occurrence of i in the partition e.g.
partition λ = [102] denotes a series where number 0 oc-
curs ones, number 1 does not occur (occurs zero times)
and number 2 occurs twice. The Jack polynomials are
eigenstates of the following Laplace–Beltrami Hamilto-
nian defined in the space of symmetric polynomials:

HLB(α) = α
∑
i

(xi∂i)(xi∂i)

+
∑
i<j

(xi + xj)(xi − xj)−1(xi∂i − xj∂j). (1)

Fermionic Jacks denoted Sαλ+δ have an additional anti-
symmetrizing Vandermonde factor for δ = [111 . . . 1]. An
explicit recursion construction of both Jack and fermionic
Jacks was derived [5, 10, 11, 16]. We compare selected
Jack-based wave functions with ground states of the
Coulomb interaction of electrons confined in given Lan-
dau level (LL) and two materials: GaAs and graphene.

2. Theory

Mathematical analysis of the angular momentum oper-
ators on the sphere provides tools used in determination
of FQH wave functions. Such analysis have been per-
formed for the symmetric Jack polynomials (bosonic) [7–
9, 12], necessary conditions for the parameters of a Jack
to be considered as FQH state have been given. That is
α = αk,r = −(k+ 1)/(r− 1) for (k+ 1) and (r− 1) both
are positive integers and coprime, a partition has to have
a form λ = λ0k,r,s = [n00

s(r−1)k0r−1k0r−1k . . . k], where
0r−1 denotes the sequence of (r − 1) zeros. We examine
the case of s = 1 (this implies n0 = k). Filling factor ν of

the Jack state is related to its partition λ in a following
way. ν ≈ #λ

λmax
where λmax is maximal element of par-

tition λ and #λ is its number of elements. Relation is
only approximate due to the presence of a shift. Proper
relation states νλmax = #λ − S and S is a constant
shift which is usually the same as shift on the Haldane
sphere. For example partition µ = [1010101] corresponds
to the ν = #µ−S

µmax
= 4−1

6 (the Jack polynomial indexed
by this is related to the bosonic Laughlin state ν = 1/2).
Relations between parameters of fermionic Jack can be
obtained straightforwardly [10, 11].

We perform our calculations for the family of Jack-
related wave functions at filling factor ν = 1/3. The
most prominent fractional quantum Hall state at this fill-
ing is the famous Laughlin wave function [17, 18] which
is a fermionic Jack S−2

[1010...01]+δ = S−2
[102102...021]. Using

a particle–hole symmetry of a wave function of electrons
confined within one LL at filling ν one can obtain valid
description of the electron system at filing (1− ν). Thus
we decided to discuss anti-Jack wave functions (the Jack
wave functions reflected using particle–hole symmetry),
proposed originally for the state ν = 2/3. Our attention
has been pointed onto an anti-Jack S−5

[1402...0214] which is
a member of a “parafermion” ν = k/(k + 2), k = 1, 2 . . .
family, for k = 4 [19, 20]. This series of states can be
viewed as the densest ground states generated by the
short range (k + 1)-body repulsion [21]. One could ex-
pect that a fermionic anti-Jack generated by the par-
tition [120120 . . . 12] = [222 . . . 2] + δ should be exam-
ined, however it does not satisfy coprime conditions (i.e.
for k = 2, r = 1 numbers k + 1 and r − 1 are not co-
prime), moreover, real parameter would have to take
value α = −∞. This would correspond to the function
being product of a monomial and the Vandermonde de-
terminant. Such object is not interesting for the applica-
tions in FQHE due to the trivial form of a function. Sim-
ilarly state generated by [1204 . . .] does not give a proper
fermionic Jack, due to the same condition (k + 1 = 3
equals r−1 = 3). Nonetheless we used recursion formula

(607)
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for fermionic Jack [1204 . . .] and numerically confirmed
that the Jack polynomial indexed by this partition has a
pole at α2,4 = − 3

3 = −1 and is not well defined.

3. Results

Our numerical overlaps of two examined states (Jack
S−2
[102102...021] and anti-Jack S−5

[1402...0214]) and selected
Coulomb interaction states are presented in Table I. Data
confirm well known fact that the Laughlin wave function
is a valid description of a FQHE at the LLL in GaAs,
obtained overlaps reach almost 99%. Similar values have

been obtained for the first excited LL in graphene. On
the other hand, values of overlaps in the first excited LL
in GaAs are not satisfactory, but improve upon effects of
nonzero layer width. Results for the anti-Jack [1402 . . .]
suggest that it may be considered as a description of FQH
state at first excited LL in GaAS and graphene, how-
ever values are not overwhelming. Neither of considered
wave functions seem to be a proper description of sec-
ond excited LL in graphene. The results show what Jack
polynomials fit FQHE for one particular filling factor.
Nonetheless in order to get broader picture of Jack-based
wave functions in FQHE further study is required.

TABLE I

Overlaps of two indicated Jack states with different Coulomb ground states with additional requirement of zero
angular momentum. Consecutive columns stand for: partition [. . . ], electron number N , magnetic flux on the
sphere 2Q, and the overlaps with Coulomb ground states in the n = 0 and 1 Landau levels in GaAs (LLn) and
in the n = 1 and 2 Landau levels in graphene (G-LLn). Calculations have been performed for zero layer width
for each Coulomb system, with an exception of LLwide

1 corresponding to layer width of 3 magnetic lengths.

Jack N 2Q LL0 LL1 LLwide
1 G-LL1 G-LL2

Jack 14 39 0.9887 0.5771 0.7411 0.9858 0.0018
[102 . . . 021] 15 42 0.9876 0.5298 0.7275 0.9845 0.0005

anti-Jack 7 27 0.6186 0.8675 0.8563 0.6161 0.5082
[1402 . . . 0214] 9 33 0.7349 0.7697 0.7832 0.7358 0.1139
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